Guía de operación, servicio y mantenimiento de Benchmark 750-3000 Operation, Service & Maintenance Guide - Latin America

AERCO
A WATTS Brand

MANUAL DEL USUARIO (2 de 2)

GUÍA DE OPERACIÓN, SERVICIO Y MANTENIMIENTO

Calderas de la serie Benchmark

Calderas de condensación, con flama modulante de gas natural, gas propano o combustible dual

Calderas de 750, 1000, 1500, 2000, 2500 y 3000 MBH

VER TAMBIÉN: Guía de instalación y arranque de Benchmark, OMM-0131 (GF-205-LA)

APLICA A LOS MODELOS:

Gas natural:
- BMK 750
- BMK 1000
- BMK 1500
- BMK 2000
- BMK 2500
- BMK 3000

Dual (GN/P)
- BMK 1500DF
- BMK 2000DF
- BMK 2500DF
- BMK 3000DF

Propano:
- BMK 750P
- BMK 1000P
- BMK 1500P
- BMK 2000P

Aplica a los números de series:
G-17-2400 y superiores.

Publicación inicial: 01/02/2018

Asistencia Técnica
1-800-526-0288
(lun-vier, 8 am-5pm EST)
www.aerco.com

AVISO LEGAL:
La información contenida en el presente manual está sujeta a cambios sin previa notificación por parte de AERCO International, Inc. AERCO no otorga garantías de ningún tipo relativas a este material, incluidas garantías de comerciabilidad e idoneidad de alguna aplicación específica. AERCO International no es responsable de los errores que aparezcan en este manual, ni por daños incidentales o consecuenciales que ocurran relacionados con el nobiliario, desempeño o uso de estos materiales.
CONTENIDO

4.2 DISPOSITIVO DE ENCENDIDO - INYECTOR ... 41
4.3 DETECTOR DE FLAMA .. 46
4.4 SENSOR DE O₂ ... 46
4.5 PRUEBA A DISPOSITIVOS DE SEGURIDAD .. 47
4.6 INSPECCIÓN DEL QUEMADOR ... 47
 4.6.1 INSPECCIÓN DEL QUEMADOR DE BMK 750/1000 ... 47
 4.6.2 INSPECCIÓN DEL QUEMADOR DE BMK 1500-3000 ... 50
4.7 TRAMPA DE DRENADO DE CONDENSADO .. 54
4.8 LIMPIEZA Y REMPLAZO DE FILTRO DE AIRE .. 55
4.9 PRUEBA DE INTEGRIDAD DEL CAPACITOR DE INTERRUPTOR CORTE DE AGUA ... 56
 4.9.1 Interruptor de corte por bajo nivel de agua: Prueba de cortocircuito al capacitor ... 57
 4.9.2 Interruptor de corte por bajo nivel de agua. Prueba estándar de C-More 58
4.10 APAGADO DE LA CALDERA DURANTE UN PERIODO PROLONGADO 59
4.11 PUESTA EN SERVICIO DE LA CALDERA DESPUÉS DE UN APAGADO PROLONGADO ... 59
4.12 DISPOSITIVO DE CONTROL DE CHISPA (TRANSDUCTOR DE CORRIENTE AC) .. 60

SECCIÓN 5: GUÍA DE SOLUCIÓN DE PROBLEMAS .. 61
5.1 INTRODUCCIÓN ... 61
5.2 OTRAS FALLAS SIN MENSAJE DE FALLA ESPECÍFICO ... 71

APÉNDICE A: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ DE LA CALDERA 73
TABLA A-1: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ OPERATING (OPERACIÓN) ... 73
TABLA A-2: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ SETUP (CONFIGURAR) 75
TABLA A-3: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ CONFIGURATION (CONFIGURACIÓN) ... 76
TABLA A-4: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ TUNING (AFINACIÓN) 79
TABLA A-5: DESCRIPCIÓN DE LAS OPCIONES DEL MENÚ COMBUSTION CALIBRATION (CALIBRACIÓN DE COMBUSTIÓN) ... 80
TABLA A-6: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ CALIBRATION (CALIBRACIÓN) 81

APÉNDICE B: MENSAJES DE ARRANQUE,estatus y FALLA ... 85
TABLA B-1: MENSAJES DE ARRANQUE Y ESTATUS .. 85
TABLA B-2: MENSAJES DE FALLA .. 86

APÉNDICE C: TABLA DE RESISTENCIA/VOLTAJE DEL SENSOR 91

APÉNDICE D: PRUEBAS PERIÓDICAS RECOMENDADAS ... 93

APÉNDICE E: TABLAS DE RELACIÓN PARA RESET INTERIOR/EXTERIOR 95

APÉNDICE F: LISTA DE PIEZAS DE BENCHMARK 750/1000 .. 99

APÉNDICE G: LISTA DE PIEZAS DE BENCHMARK 1500/2000 109

APÉNDICE H: LISTA DE PIEZAS DE BENCHMARK 2500/3000 125

APÉNDICE I: DIAGRAMAS DE CABLEADO ... 147

APÉNDICE J: VISTAS DEL CONTROLADOR C-MORE ... 162

APÉNDICE K: REPUESTOS RECOMENDADOS .. 164
PREÁMBULO
Las calderas de gas natural y propano Benchmark (BMK) 750, 1000, 1500, 2000, 2500 y 3000 de AERCO son unidades modulantes y de condensación. Representan un auténtico avance en la industria y, al mismo tiempo, cubren las exigencias que representan los actuales problemas energéticos y ambientales. Todos estos modelos, sometidos a calibración estándar, cumplen el requisito de 20 partes por millón (ppm) de NOx, además, los modelos Benchmark del 750 al 2000, son capaces de cumplir el riguroso requisito de 9 ppm de NOx que establece Estados Unidos.

Diseñadas para integrarse en cualquier sistema hidrónico de circuito cerrado, la función de modulación de las calderas Benchmark relaciona directamente la potencia de entrada de energía con las fluctuantes demandas del sistema. Estos modelos de Benchmark ofrecen una operación con eficiencia extremadamente alta y resultan muy convenientes tanto para los modernos sistemas de calentamiento de agua de baja temperatura como para los sistemas convencionales.

¡IMPORTANTE!
A menos que se especifique lo contrario, todas las medidas aplican tanto para los modelos de gas natural como para los de propano.

Los modelos Benchmark operan dentro de los siguientes rangos de potencia de entrada y salida:

Rangos de potencia de entrada y salida de la caldera Benchmark

<table>
<thead>
<tr>
<th>MODELO</th>
<th>RANGO DE POTENCIA DE ENTRADA (BTU/H)</th>
<th>RANGO DE POTENCIA DE SALIDA (BTU/H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MÍNIMO</td>
<td>MÁXIMO</td>
</tr>
<tr>
<td>BMK 750</td>
<td>50,000 (14.6 kW)</td>
<td>750,000 (220 kW)</td>
</tr>
<tr>
<td>BMK 1000</td>
<td>50,000 (14.6 kW)</td>
<td>1,000,000 (293 kW)</td>
</tr>
<tr>
<td>BMK 1500</td>
<td>75,000 (22 kW)</td>
<td>1,500,000 (440 kW)</td>
</tr>
<tr>
<td>BMK 2000</td>
<td>100,000 (29.3 kW)</td>
<td>2,000,000 (586 kW)</td>
</tr>
<tr>
<td>BMK 2500</td>
<td>167,000 (48.9 kW)</td>
<td>2,500,000 (732 kW)</td>
</tr>
<tr>
<td>BMK 3000</td>
<td>200,000 (58.6 kW)</td>
<td>3,000,000 (879 kW)</td>
</tr>
</tbody>
</table>

La potencia de salida de la caldera es la relación entre el nivel de la flama (posición de la válvula) y la temperatura del agua de retorno.

Ya sea que se use de manera individual o en configuraciones modulares, las calderas BMK ofrecen la máxima flexibilidad en sistemas de ventilación, con requisitos mínimos de espacio en la instalación. Estas calderas son dispositivos de presión positiva Categoría II y IV. Tanto de manera individual como en unidades múltiples dispuestas en serie, son capaces de operar con las siguientes configuraciones de ventilación.

- **Aire para combustión de la habitación:**
 - Toma vertical
 - Toma horizontal
- **Aire para la combustión por medio de tubo:**
 - Toma vertical
 - Toma horizontal

Estas calderas son capaces de ventilarse usando sistemas de polipropileno y de aleación AL29-4C. Además, los modelos BMK 750 y 1000 también están aprobados para sistemas de ventilación de PVC y CPVC.

La avanzada electrónica de Benchmark está disponible en varios modos de ejecución entre los que se puede seleccionar. Además, ofrece métodos los más eficientes de operación y de integración de sistemas de administración de energía.
Terminología técnica de AERCO

<table>
<thead>
<tr>
<th>TÉRMINO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>µA</td>
<td>Microampere (la millonésima parte de un ampere)</td>
</tr>
<tr>
<td>A (Amp)</td>
<td>Ampere</td>
</tr>
<tr>
<td>ACS</td>
<td>Sistema de Control AERCO, sistemas de gestión de calderas de AERCO</td>
</tr>
<tr>
<td>AGND</td>
<td>Conexión analógica a tierra</td>
</tr>
<tr>
<td>ALRM</td>
<td>Alarma</td>
</tr>
<tr>
<td>ANSI</td>
<td>Instituto Nacional Estadounidense de Estándares</td>
</tr>
<tr>
<td>ASME</td>
<td>Sociedad Estadounidense de Ingenieros Mecánicos</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliar</td>
</tr>
<tr>
<td>BAS</td>
<td>Sistema de Automatización del Edificio, a menudo equivalente a EMS (ver más adelante)</td>
</tr>
<tr>
<td>Baud Rate (velocidad de transferencia)</td>
<td>Velocidad de símbolos, o simplemente el número de cambios de símbolos distintos (cadena de señalización) transmitidos por segundo. No es lo mismo que bits por segundo, a menos que cada símbolo mida un bit.</td>
</tr>
<tr>
<td>BMK (Benchmark)</td>
<td>Calderas de la serie Benchmark de AERCO</td>
</tr>
<tr>
<td>BMS o BMS II</td>
<td>Sistema de Gestión de Calderas de AERCO</td>
</tr>
<tr>
<td>BST</td>
<td>Tecnología de Encendido Secuencial de Calderas (Boilers Sequencing Technology) integrada de AERCO</td>
</tr>
<tr>
<td>BTU</td>
<td>Unidad Térmica Británica Unidad de energía que se requiere aproximadamente para generar el calor necesario para elevar la temperatura de una 1 libra (0.45 kg) de agua 1° F (0.55 °C)</td>
</tr>
<tr>
<td>BTU/H</td>
<td>BTU por Hora (1 BTU/h = 0.29 W)</td>
</tr>
<tr>
<td>Caja I/O</td>
<td>La caja de entrada/salida (I/O) actualmente se usa en los productos de las series de Benchmark, Innovation y KC1000</td>
</tr>
<tr>
<td>Cal.</td>
<td>Calibración</td>
</tr>
<tr>
<td>CBZ</td>
<td>Cabezal</td>
</tr>
<tr>
<td>CCP</td>
<td>Panel de Control Combinado</td>
</tr>
<tr>
<td>CCS</td>
<td>Sistema Combinado de Control</td>
</tr>
<tr>
<td>CNTL</td>
<td>Control</td>
</tr>
<tr>
<td>CO</td>
<td>Monóxido de carbono</td>
</tr>
<tr>
<td>COM (Com)</td>
<td>Comunicación</td>
</tr>
<tr>
<td>Controlador C-More</td>
<td>Un sistema de control desarrollado por AERCO, que actualmente se usa en todas las líneas de productos de las Series Benchmark, Innovation y KC1000.</td>
</tr>
<tr>
<td>CPU</td>
<td>Unidad de Procesamiento Central</td>
</tr>
<tr>
<td>GND</td>
<td>Conexión a tierra</td>
</tr>
<tr>
<td>D.E.</td>
<td>Diámetro exterior</td>
</tr>
<tr>
<td>D.I</td>
<td>Diámetro interior</td>
</tr>
<tr>
<td>DBB</td>
<td>Doble bloqueo y purga instalado en fábrica; un tren de gas que contiene 2 válvulas de cierre de seguridad (SSOV) y una válvula de ventilación operada con solenoide.</td>
</tr>
<tr>
<td>DIP</td>
<td>Paquete en línea dual. Es un tipo de interruptor</td>
</tr>
<tr>
<td>DIR</td>
<td>Dirección</td>
</tr>
<tr>
<td>ECU</td>
<td>Unidad de Control Electrónico (sensor de O₂)</td>
</tr>
<tr>
<td>EDFC (Edfc)</td>
<td>Edificio</td>
</tr>
<tr>
<td>EMS</td>
<td>Sistema de Administración de Energía, a menudo es equivalente a BAS</td>
</tr>
<tr>
<td>ENC</td>
<td>Encendido</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual. Se usa para definir los trenes de gas de la caldera.</td>
</tr>
</tbody>
</table>
Terminología técnica de AERCO

<table>
<thead>
<tr>
<th>TÉRMINO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF-xxxx</td>
<td>Funcionamiento con gas (sistema de numeración de documentos de AERCO)</td>
</tr>
<tr>
<td>Hex</td>
<td>Número hexadecimal (0 – 9, A – F)</td>
</tr>
<tr>
<td>HP</td>
<td>Caballo de fuerza</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz (ciclos por segundo)</td>
</tr>
<tr>
<td>I/O</td>
<td>Entrada/Salida</td>
</tr>
<tr>
<td>IC</td>
<td>Intercambiador de calor</td>
</tr>
<tr>
<td>Interc</td>
<td>Interconexión</td>
</tr>
<tr>
<td>IP</td>
<td>Protocolo de Internet</td>
</tr>
<tr>
<td>ISO</td>
<td>Organización Internacional para la Estandarización</td>
</tr>
<tr>
<td>Lbs.</td>
<td>Libras (1 lb = 0.45 kg)</td>
</tr>
<tr>
<td>LED</td>
<td>Diodo emisor de luz</td>
</tr>
<tr>
<td>MA (mA)</td>
<td>Miliampere (1 milésima de un ampere)</td>
</tr>
<tr>
<td>MÁX (Máx)</td>
<td>Máximo</td>
</tr>
<tr>
<td>MBH</td>
<td>1000 BTU por Hora</td>
</tr>
<tr>
<td>MÍN (Mín)</td>
<td>Mínimo</td>
</tr>
<tr>
<td>Modbus®</td>
<td>Protocolo de transmisión serial de datos de half dúplex desarrollado por Modicon de AEG</td>
</tr>
<tr>
<td>MOM y OyM</td>
<td>Manual de Operación y Mantenimiento</td>
</tr>
<tr>
<td>N/P</td>
<td>Número de pieza</td>
</tr>
<tr>
<td>NA (N.A.)</td>
<td>Normalmente abierto</td>
</tr>
<tr>
<td>NB</td>
<td>Óxido de nitrógeno bajo</td>
</tr>
<tr>
<td>NC (N.C.)</td>
<td>Normalmente cerrado</td>
</tr>
<tr>
<td>NOx</td>
<td>Óxido de nitrógeno</td>
</tr>
<tr>
<td>NPT</td>
<td>Rosca Americana Cónica para Tubos</td>
</tr>
<tr>
<td>O2</td>
<td>Oxígeno</td>
</tr>
<tr>
<td>onAER</td>
<td>Sistema de monitoreo remoto en línea de AERCO</td>
</tr>
<tr>
<td>PCB</td>
<td>Tarjeta de circuitos impresos</td>
</tr>
<tr>
<td>PCH</td>
<td>Pies Cúbicos por Hora (1 PCH= 0.028 m³/h)</td>
</tr>
<tr>
<td>PDC</td>
<td>Prueba de Cierre</td>
</tr>
<tr>
<td>PP</td>
<td>Punto a Punto (usualmente en las redes RS232)</td>
</tr>
<tr>
<td>PPM</td>
<td>Partes por Millón</td>
</tr>
<tr>
<td>ProtoNode</td>
<td>Interfaz de hardware entre BAS y una caldera o calentador de agua.</td>
</tr>
<tr>
<td>PSI</td>
<td>Libras por pulgada cuadrada (1 PSI =6.89 kPa)</td>
</tr>
<tr>
<td>PVC</td>
<td>Cloruro de polivinilo, un plástico sintético común</td>
</tr>
<tr>
<td>PWM</td>
<td>Modulación por Ancho de Pulso</td>
</tr>
<tr>
<td>PyT</td>
<td>Presión y Temperatura</td>
</tr>
<tr>
<td>REF (Ref)</td>
<td>Referencia</td>
</tr>
<tr>
<td>RES.</td>
<td>Resistivo</td>
</tr>
<tr>
<td>Resistencia de terminación</td>
<td>Resistencia colocada a cada extremo de una red de conexión en cadena o en redes multipunto para evitar reflexiones que puedan invalidar datos en la comunicación.</td>
</tr>
<tr>
<td>RS232 (o EIA-232)</td>
<td>Transmisión de datos estándar, serial, full dúplex (FDX), basada en el Estándar RS232</td>
</tr>
<tr>
<td>RS422 (o EIA-422)</td>
<td>Transmisión de datos estándar, serial, full dúplex (FDX), basada en el Estándar RS422</td>
</tr>
</tbody>
</table>
Terminología técnica de AERCO

<table>
<thead>
<tr>
<th>TÉRMINO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485 (o EIA-485)</td>
<td>Transmisión de datos estándar, serial, half dúplex (HDX), basada en el Estándar RS485</td>
</tr>
<tr>
<td>RTN (Rtn)</td>
<td>Retomo</td>
</tr>
<tr>
<td>SETPT (Setpt)</td>
<td>Temperatura fijada</td>
</tr>
<tr>
<td>SHLD (Shld)</td>
<td>Cable blindado</td>
</tr>
<tr>
<td>SPDT</td>
<td>Paso doble unipolar, un tipo de interruptor</td>
</tr>
<tr>
<td>SSOV</td>
<td>Válvula de cierre de seguridad</td>
</tr>
<tr>
<td>Tablero IGST</td>
<td>Tablero de Encendido/de pasos, en el Controlador C-More</td>
</tr>
<tr>
<td>Tarjeta PMC</td>
<td>Tarjeta de microcontrolador primario (PMC), contenida en el Controlador C-More.</td>
</tr>
<tr>
<td>TEMP (Temp)</td>
<td>Temperatura</td>
</tr>
<tr>
<td>Tip-N-Tell</td>
<td>Mecanismo que puede determinar si un paquete fue inclinado durante el envío.</td>
</tr>
<tr>
<td>UL</td>
<td>Empresa que aplica pruebas y valida productos</td>
</tr>
<tr>
<td>VAC</td>
<td>Voltios, Corriente Alterna</td>
</tr>
<tr>
<td>VDC</td>
<td>Voltios, Corriente Directa</td>
</tr>
<tr>
<td>VFD</td>
<td>Visualizador fluorescente de vacío, también convertidor de frecuencia variable.</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>W.C.</td>
<td>Columna de agua, unidad de presión (1 W.C. = 249 Pa)</td>
</tr>
</tbody>
</table>
SECCIÓN 1: SEGURIDAD Y PREVENCIÓN

1.1 ADVERTENCIAS Y PRECAUCIONES

Los instaladores y el personal operativo DEBEN obedecer en todo momento todas las normas de seguridad. Las siguientes advertencias y precauciones son generales y debe dárselas la misma atención que a las advertencias específicas que se incluyen en este instructivo. Además de todos los requisitos incluidos en este Manual de instrucciones de AERCO, la instalación de las unidades DEBE hacerse conforme a los códigos locales de construcción. Se deberá consultar a las autoridades competentes antes de hacer las instalaciones.

¡IMPORTANTE!
Esta Manual de Instrucción es parte integral del producto y debe conservarse en buenas condiciones. La persona encargada de la instalación deberá entregarla al usuario y este deberá guardarla en un lugar seguro para futuras referencias.

¡CUIDADO!

- No use cerillos, velas, antorchas u otra fuente de ignición para revisar fugas de gas.
- Cuando se liberan, los fluidos sometidos a presión pueden causar lesiones a las personas o dañar el equipo. Asegúrese de cerrar todas las válvulas de cierre de agua de entrada y de salida. Disminuya con cuidado toda la presión acumulada hasta llegar a cero antes de comenzar las labores de mantenimiento.
- Antes de intentar realizar cualquier trabajo de mantenimiento en la unidad, cierre todos los suministros eléctricos y de gas de la unidad.
- El tubo de ventilación de salida de gases opera con presión positiva, por lo tanto, debe estar completamente sellado para evitar alguna fuga de productos de combustión en los espacios habitables.
- Este equipo (BMK 2500/3000) puede usar tensiones eléctricas de 120, 208-230 o 380 o 460 trifásico y 24 voltios AC. Por lo tanto, la cubierta de la caja de alimentación de la unidad (localizada detrás de la puerta del panel frontal) debe estar instalada en todo momento, excepto durante el mantenimiento y servicio.
- Se debe instalar un interruptor unipolar (en unidades de 120 VAC) o tripolar (en unidades de 208-230, 380 y 460 VAC) en la línea de suministro eléctrico de la unidad. Este interruptor debe colocarse en un lugar de fácil acceso, de manera que sea rápido y seguro desconectar la corriente eléctrica. No fije el interruptor en los paneles de cierre de lámina de metal.

¡PRECAUCIÓN!

- Muchos de los jabones que se usan para probar si hay alguna fuga en la tubería de gas son corrosivos para los metales. Por lo tanto, la tubería se debe enjuagar muy bien con agua limpia después de que se hayan terminado las verificaciones de fuga.
- NO use esta caldera si alguna de sus partes ha estado sumergida en el agua. Llame al personal técnico calificado para que inspecciones y reemplace cualquier parte que haya estado sumergida en el agua.
1.2 APAGADO DE EMERGENCIA

Si se presenta un sobrecalentamiento o falla en el cierre del suministro de gas, cierre la válvula de gas manual (Figura 1-1), la cual se encuentra en la parte exterior de la unidad.

NOTA:
La persona encargada de la instalación debe identificar e indicar la ubicación de la válvula de gas manual para cierre de emergencia al personal que opere el equipo.

![Válvula de cierre de gas manual](image1)

Figura 1-1: Válvula de cierre de gas manual

1.3 APAGADO PROLONGADO

Después del apagado prolongado, se recomienda que se sigan los procedimientos de arranque inicial y de pruebas a dispositivos de seguridad de la Sección 4 y 5, respectivamente, de la *Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA)*, para comprobar todos los parámetros de operación del sistema. Si hay una emergencia, desconecte el suministro de corriente de la caldera AERCO y cierre la válvula de gas manual localizada en la parte superior de la unidad. La persona encargada de la instalación debe señalarle la ubicación del dispositivo de cierre de emergencia.
SECCIÓN 2: OPERACIÓN

2.1 INTRODUCCIÓN

La información en esta sección proporciona una guía para la operación de la Caldera Benchmark usando el Controlador C-More, el cual va montado al frente de la unidad. Es de suma importancia que el arranque inicial de esta unidad lo realice personal capacitado por la fábrica. Operar el equipo antes de que personal capacitado por la empresa realice el arranque inicial puede invalidar la garantía. Además, se debe tener en cuenta en todo momento las siguientes ADVERTENCIAS y PRECAUCIONES.

¡CUIDADO!

- **LOS VOLTAJES ELÉCTRICOS EN ESTE SISTEMA INCLUYEN 120 o 220 VAC, monofásico (BMK 750 – 2000), o 208-230 o 380 o 460 VAC trifásico (BMK 2500/3000) y 24 voltios AC. Únicamente técnicos certificados por la empresa deben darle mantenimiento.**

- **NO INTENTE ENCENDER LA UNIDAD SIN AGUA SUFICIENTE.** Encender la unidad sin el nivel de agua lleno puede ocasionar daños graves a la unidad, lesiones a las personas o daños a la propiedad. Esta acción invalidará cualquier garantía.

¡PRECAUCIÓN!

Se deben completar todos los procedimientos de instalación descritos en la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA) antes de intentar arrancar la unidad.
2.2 DESCRIPCIÓN DEL CONTROLADOR C-MORE

Todas las calderas Benchmark usan el Controlador C-More que se muestra en la Figura 2-1. Este panel contiene todos los controles, indicadores y mensajes en pantalla necesarios para operar, ajustar y resolver los problemas de la caldera. Dichos controles, indicadores y mensajes en pantalla de operación se incluyen y describen en la Tabla 2-1. Se proporciona más información sobre este tema en los procedimientos de operación individuales y las descripciones de menú que se ofrecen en esta sección.

Figura 2-1: Vista frontal de Controlador C-More
<table>
<thead>
<tr>
<th>OPCIÓN</th>
<th>INDICADORES LED DE ESTATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cuatro LED de estatus indican el estado actual de la operación, de la siguiente manera:</td>
</tr>
<tr>
<td>1</td>
<td>COMM (comunicación)= Se enciende cuando sucede una comunicación RS232 (ver punto 4).</td>
</tr>
<tr>
<td></td>
<td>MANUAL (manual) = Se enciende cuando la posición de válvula (nivel de flama) está siendo controlada usando el teclado del panel frontal. Este modo de operación es únicamente para uso del personal técnico.</td>
</tr>
<tr>
<td></td>
<td>REMOTE (remoto)= Se enciende cuando la unidad está siendo controlada por una señal externa del Sistema de Administración de Energía.</td>
</tr>
<tr>
<td></td>
<td>DEMAND (demanda)= Se enciende cuando hay demanda de calor.</td>
</tr>
<tr>
<td>2</td>
<td>Pantalla OUTLET TEMPERATURE (temperatura de salida) La pantalla LED de 7 segmentos y 3 dígitos muestra continuamente la temperatura de agua de salida. El LED °F o °C junto a la pantalla se enciende para indicar si la temperatura se muestra en grados Fahrenheit o Celsius. °F o °C parpadea cuando se opera en modo DEADBAND (banda inactiva). En un Administrador BST, la pantalla parpadea y muestra la temperatura del cabezal.</td>
</tr>
<tr>
<td>3</td>
<td>Pantalla VFD Visualizador fluorescente de vacío (VFD) consiste en 2 líneas, cada una de ellas con la capacidad de mostrar 16 caracteres alfanuméricos. La información que aparece en pantalla incluye:</td>
</tr>
<tr>
<td></td>
<td>• Mensajes de arranque</td>
</tr>
<tr>
<td></td>
<td>• Mensajes de falla</td>
</tr>
<tr>
<td></td>
<td>• Mensajes de estado de operación</td>
</tr>
<tr>
<td></td>
<td>• Selección del menú</td>
</tr>
<tr>
<td></td>
<td>• Menú del BST</td>
</tr>
<tr>
<td>4</td>
<td>Puerto RS232 Este puerto lo usa únicamente personal capacitado por la empresa para monitorear las comunicaciones de onAER, en combinación con el Cable Adaptador de RS232 (N/P 124675).</td>
</tr>
<tr>
<td>5</td>
<td>Indicador FAULT (falla) El Indicador LED FAULT (FALLA) rojo se enciende cuando se enciende una alarma de la caldera. Aparecerá un mensaje de alarma en VFD.</td>
</tr>
<tr>
<td>6</td>
<td>Tecla CLEAR (limpiar) Apaga el indicador FAULT y limpia el mensaje de alarma si la alarma y/o no es válida. Las alarmas de bloqueo quedarán aseguradas y no podrán restablecerse solo con presionar esta tecla. En ese caso, quizás sea necesario resolver el problema para restablecer el sistema.</td>
</tr>
<tr>
<td>7</td>
<td>Indicador READY (listo) Se enciende cuando el interruptor ON/OFF está configurado en ON (encendido) y cuando se han satisfecho todas las condiciones de prepurga.</td>
</tr>
<tr>
<td>8</td>
<td>Interruptor ON/OFF (encendido/apagado) Activa y desactiva la operación de la caldera.</td>
</tr>
<tr>
<td>9</td>
<td>LOW WATER LEVEL (nivel bajo de agua) Interruptores TEST/RESET (prueba/restablecer) • Permiten comprobar la operación del dispositivo de control de nivel de agua</td>
</tr>
<tr>
<td></td>
<td>• Al presionar TEST (prueba) se abre el circuito de la sonda del nivel de agua y se simula una alarma por Nivel de Agua Bajo.</td>
</tr>
<tr>
<td></td>
<td>• Al presionar RESET (restablecer valores) se restablecen los valores del circuito del dispositivo de control del nivel de agua.</td>
</tr>
<tr>
<td></td>
<td>• Presione la tecla CLEAR (limpiar) (opción 6) para limpiar la pantalla.</td>
</tr>
</tbody>
</table>
TABLA 2-1: Controles, indicadores y pantallas de mensajes (ver Figura 2-1)

<table>
<thead>
<tr>
<th>OPCIÓN</th>
<th>FUNCIÓN DE CONTROL, INDICADOR O MENSAJE EN PANTALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TECLADO DEL MENÚ</td>
</tr>
<tr>
<td>MENU (menú)</td>
<td>Opciones de las principales categorías del menú que se muestran en la Figura 2-2. Las categorías del menú se presentan en el orden que se muestra.</td>
</tr>
<tr>
<td>BACK (atrás)</td>
<td>Permite regresar al nivel de menú anterior sin cambiar la información. Al presionarla de manera continua, esta tecla regresa a la pantalla de estatus predeterminada en la VFD. Además, estas teclas le permiten regresar al principio de una categoría de menú principal.</td>
</tr>
<tr>
<td>▲ Flecha (ARRIBA)</td>
<td>En las categorías del menú principal (Figura 2-2), presionar la tecla flecha ▲ seleccionará la categoría de menú que se muestre. Si la tecla CHANGE (cambiar) fue presionada y la opción del menú está parpadeando, presionar la tecla flecha ▲ incrementará la configuración seleccionada.</td>
</tr>
<tr>
<td>▼ Flecha (ABAJO)</td>
<td>En las categorías del menú principal (Figura 2-2), presionar esta flecha seleccionará la categoría de menú que se muestre. Si la tecla CHANGE (cambiar) fue presionada y la opción del menú está parpadeando, presionar la tecla flecha ▼ disminuirá la configuración seleccionada.</td>
</tr>
<tr>
<td>CHANGE (cambiar)</td>
<td>Permite cambiar una configuración (editada). Cuando se presiona la tecla CHANGE (cambiar), la opción de menú que se muestra comenzará a parpadear. Presionar la tecla flecha ▲ o ▼ cuando la opción está parpadeando aumentará o disminuirá la configuración seleccionada.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Guarda en la memoria las configuraciones de menú que se modifican. La pantalla dejará de parpadear.</td>
</tr>
<tr>
<td>11</td>
<td>Interruptor AUTO/MAN (automático/manual)</td>
</tr>
<tr>
<td></td>
<td>El interruptor alterna los modos de operación de la caldera entre AUTOMÁTICO y MANUAL. Cuando está en el modo MANUAL (MAN), los controles en el panel frontal están habilitados y el LED de estado MANUAL se enciende. La operación manual es únicamente para dar servicio a la unidad. Cuando está en modo AUTOMÁTICO (AUTO), el LED de estado MANUAL estará apagado y los controles del panel frontal deshabilitados.</td>
</tr>
<tr>
<td>12</td>
<td>Gráfica de barras VALVE POSITION (posición de válvula)</td>
</tr>
<tr>
<td></td>
<td>Gráfica de barras LED de 20 segmentos que muestra continuamente la posición de la válvula de aire-combustible en incrementos de 5%, de 0 a 100%.</td>
</tr>
</tbody>
</table>
2.3 MENÚS DEL CONTROLADOR C-MORE

El Controlador C-More incorpora una estructura de menú amplia que permite al operador configurar y establecer los valores de la unidad. La estructura del menú está conformada por cinco categorías de menú principales, las cuales aplican a este manual. Estas categorías se muestran en la Figura 2-2. Cada uno de los menús que se muestran contiene opciones que permiten operar los parámetros que se visualizarán y cambiarán. Los menús se protegen con niveles de contraseña para evitar el uso no autorizado.

Antes de escribir la contraseña correcta, se pueden ver las categorías de menú Operation (operación), Setup (configurar), Configuration (configuración) y Tuning (afinación). Sin embargo, con excepción de Internal Setpoint Temperature (temperatura fijada interna) en el menú Configuration (configuración), no se puede cambiar ninguna de las opciones visibles del menú.

Después de que se introduce la contraseña del nivel 1 (159), las opciones que aparecen en Setup (configurar), Configuration (configuración) y Tuning (afinación) pueden verse y cambiarse si se desea. El menú Combustion Cal (calibración de combustión) está protegido por la contraseña nivel 2 (6817), la cual es usada en el arranque inicial (ver Sección 4: Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA), para realizar la calibración de combustión antes de poner en servicio la unidad.

2.3.1 Navegación del menú y procedimiento de procesamiento

Se accede e inicia a cada menú y opción usando las teclas de menú que se muestran en la Figura 2-1. Por lo tanto, es imperativo que usted se familiarice con los siguientes pasos básicos antes de intentar realizar procedimientos específicos en el menú.

Instrucciones de navegación del menú y procedimiento de procesamiento

1. El Controlador C-More normalmente estará en el menú Operating (operación) y la VFD mostrará el estado de la unidad en ese momento. Al presionar la tecla flecha ▲ o ▼, se mostrará el resto de las opciones de datos disponibles en el menú Operating (operación).
2. Presione la tecla MENU. La pantalla mostrará el menú Setup (configurar), la cual es la siguiente categoría de menú, como se muestra en la Figura 2-2. Este menú tiene la opción Password (contraseña), la cual se introduce si se van a cambiar el resto de las opciones del menú.
3. Presione de manera continua la tecla MENU hasta que se muestre el menú deseado.
4. Cuando se muestre el menú deseado, presione la tecla flecha ▲ o ▼. Aparecerá la primera opción del menú seleccionado.
5. Continúe presionando la tecla flecha ▲ o ▼ hasta que aparezca la opción de menú que desea. Al presionar la tecla flecha ▲, se mostrarán las opciones del menú disponible en orden de arriba hacia abajo. Al presionar la tecla flecha ▼, se mostrarán las opciones en orden de abajo hacia arriba. Las opciones del menú vuelven a empezar después de que se llega a la primera o última opción disponible.
6. Para cambiar el valor o configuración de una opción de menú mostrada, presione la tecla CHANGE (cambiar). La opción que se muestra comenzará a parpadear. Presione la tecla flecha ▲ o ▼ para navegar por las selecciones de las opciones de menú disponibles que se cambiarán. Estas selecciones de la opción del menú no se repiten en serie una vez que se llega a la última selección.
7. Para escoger y almacenar una opción de menú que se ha cambiado, presione la tecla ENTER.
* Únicamente si BST (Boiler Sequencing Technology, en español Tecnología de Encendido Secuencial de Calderas) está habilitada. La tecnología BST se describe a detalle en la Sección 6 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).

Figura 2-2: Estructura del menú

NOTA:
Las siguientes secciones ofrecen descripciones breves de las opciones que aparecen en cada menú. Consulte el Apéndice A para descripciones detalladas de cada opción de menú. Consulte el Apéndice B si desea ver la lista y descripciones de los mensajes de arranque, estatus y error.
2.4 Menú OPERATING (operación)

El menú Operating (operación) muestra algunos parámetros de operación importantes para la unidad. Todas las opciones de este menú, excepto O₂ Monitor (dispositivo de control de O₂), en la opción 15, son "sólo lectura" y no pueden modificarse. No se puede tener acceso a este menú sin introducir una contraseña.

El Apéndice A-1 muestra una descripción completa de cada opción.

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>Aparece únicamente si se habilita:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Active Setpoint (temperatura fijada activa)</td>
<td>40°F (4.4°C) a 240°F (116°C)</td>
<td></td>
</tr>
<tr>
<td>2 Outlet Temp (temperatura de salida)</td>
<td>30°F (-1.1°C) a 240°F (116°C)</td>
<td>Configuration Menu (menú de configuración)</td>
</tr>
<tr>
<td>3 Inlet Temp (temperatura de entrada)</td>
<td>30°F (-1.1°C) a 240°F (116°C)</td>
<td></td>
</tr>
<tr>
<td>4 Air Temp (temperatura de aire)</td>
<td>-70°F (-56.7°C) a 245°F (118°C)</td>
<td></td>
</tr>
<tr>
<td>5 Outdoor Temp (temperatura exterior)</td>
<td>-70°F (-56.7°C) a 130°F (54.4°C)</td>
<td>Configuration Menu (menú de configuración)</td>
</tr>
<tr>
<td>6 Valve Position In (potencia de entrada de la posición de la válvula)</td>
<td>0% a 100%</td>
<td></td>
</tr>
<tr>
<td>7 Valve Position Out (potencia de salida de la posición de la válvula)</td>
<td>0% a 100%</td>
<td>Configuration Menu (menú de configuración)</td>
</tr>
<tr>
<td>8 FFWD Temp (temperatura de compensación dinámica)</td>
<td>30°F (-1.1°C) a 240°F (115.6°C)</td>
<td></td>
</tr>
<tr>
<td>9 Exhaust Temp (temperatura de salida de gases)</td>
<td>Muestra la temperatura en ese momento de la salida de gases</td>
<td></td>
</tr>
<tr>
<td>10 Flame Strength (potencia de llama)</td>
<td>0% a 100%</td>
<td></td>
</tr>
<tr>
<td>11 Min Flame Str (potencia de llama mínima)</td>
<td>Not Used (sin usar)</td>
<td></td>
</tr>
<tr>
<td>12 O₂ Monitor (dispositivo de control de O₂)</td>
<td>Enable (habilitar) a Disable (deshabilitar)</td>
<td>O₂ Monitor (dispositivo de control de O₂) = Enabled (habilitado)</td>
</tr>
<tr>
<td>13 Oxygen Level (nivel de oxígeno)</td>
<td>0% a 21%</td>
<td></td>
</tr>
<tr>
<td>14 Ignition Time (tiempo de encendido)</td>
<td>0.00 a 10.00</td>
<td></td>
</tr>
<tr>
<td>15 SSOV Time to OPN (tiempo para que la SSOV se abra)</td>
<td>0.00 a 10.00</td>
<td></td>
</tr>
<tr>
<td>16 Spark Current (corriente de chispa)</td>
<td>0 Amp a 2.5 Amp</td>
<td></td>
</tr>
<tr>
<td>17 Run Cycles (ciclos de ejecución)</td>
<td>0 a 999,999,999</td>
<td></td>
</tr>
<tr>
<td>18 Run Hours (horas de ejecución)</td>
<td>0 a 999,999,999</td>
<td></td>
</tr>
<tr>
<td>19 Fault Log (historial de fallas)</td>
<td>0 a 19</td>
<td></td>
</tr>
</tbody>
</table>

Hay un parámetro adicional asociado con el menú Operating (operación), (Min = 0, Máx = 100) que no aparece en este menú, pero puede mostrarse apretando el botón Auto/Man (automático/manual), en la parte frontal del Controlador C-More.
SECCIÓN 2: OPERACIÓN

2.5 Menú SETUP (configurar)

El menú Setup (configurar) permite que el operador ingrese la contraseña de la unidad (159), la cual se solicita para cambiar las opciones del menú. Para evitar el uso no autorizado, el tiempo activo de la contraseña es de 1 hora. Por lo tanto, se debe volver a ingresar la contraseña cuando así se requiera. Además de permitir ingresar la contraseña, el menú Setup (configurar) también se usa para poner la fecha y la hora, así como las unidades de las medidas de temperatura. Un indicador de "view-only software version" (versión de sólo lectura del software) se ofrece también para señalar la versión en ese momento del software del Controlador C-More.

El Apéndice A-2 muestra una descripción completa de cada opción.

TABLA 2-3: Menú SETUP (configurar)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Password (contraseña)</td>
<td>0-9999</td>
<td>0</td>
</tr>
<tr>
<td>2. Language (idioma)</td>
<td>English (inglés)</td>
<td>English (inglés)</td>
</tr>
<tr>
<td>3. Time (hora)</td>
<td>12:00 a.m. - 11:59 p.m.</td>
<td>12:00</td>
</tr>
<tr>
<td>4. Date (fecha)</td>
<td>01/01/00 - 12/31/99</td>
<td>01/01/00</td>
</tr>
<tr>
<td>5. Unit of Temp (unidad de temperatura)</td>
<td>Fahrenheit o Celsius</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>6. Comm Address (dirección de comunicación)</td>
<td>0-127</td>
<td>0</td>
</tr>
<tr>
<td>7. Baud Rate (velocidad de transferencia)</td>
<td>2400, 4800, 9600, 19.2K</td>
<td>9600</td>
</tr>
<tr>
<td>8. onAER Mode (modo onAER)</td>
<td>Ethernet o SD Card (tarjeta SD)</td>
<td>Ethernet</td>
</tr>
<tr>
<td>9. Min Upload Timer (temporizador de carga mínima)</td>
<td>0-9,999 seg</td>
<td>0</td>
</tr>
<tr>
<td>10. Unit Alpha (letra de la unidad)</td>
<td>E, G, H, R, N o A</td>
<td>A</td>
</tr>
<tr>
<td>11. Unit Year (año de la unidad)</td>
<td>0-99</td>
<td>0</td>
</tr>
<tr>
<td>12. Unit Serial # (número de serie de la unidad)</td>
<td>0-9999</td>
<td>0</td>
</tr>
<tr>
<td>13. Software</td>
<td>Ver 0.00 - Ver 9.99</td>
<td>Current software version (versión actual del software)</td>
</tr>
</tbody>
</table>
2.6 Menú CONFIGURATION (configuración)

El menú Configuration (configuración) permite ajustes en la temperatura fijada interna (Setpt) independientemente de si se ha introducido o no la contraseña correcta. Se requiere establecer la temperatura fijada interna para operar en el modo CONSTANT SETPOINT (temperatura fijada constante). El resto de las opciones en este menú necesitan que se introduzca la contraseña correcta antes de cambiar los datos existentes. Este menú tiene algunas otras configuraciones, las cuales se muestran o no, dependiendo del modo de operación que tenga configurado en ese momento.

El Apéndice A-3 muestra una descripción completa de cada opción.

NOTA:
Las configuraciones del menú Configuration (configuración) vienen predeterminadas, de acuerdo con los requisitos especificados en cada orden individual. En condiciones de operación normal, no se requerirán cambios.

TABLA 2-4: Menü CONFIGURATION (configuración)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Internal Setpt (temperatura fijada interna)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Unit Type (tipo de unidad)</td>
<td>BMK Blr Std (caldera estándar BMK), BMK Blr Std Dual (caldera estándar dual BMK), BMK Blr LN (caladera de nitrógeno bajo BMK), BMK Blr LN Dual (Caldera dual de nitrógeno bajo BMK)</td>
<td>BMK Boiler LN (caldera de nitrógeno bajo BMK)</td>
</tr>
<tr>
<td>3 Unit Size (tamaño de la unidad)</td>
<td>750 MBH (220 kW), 1000 MBH (293 kW), 1500 MBH (439.6 kW), 2000 MBH (586.1 kW), 2500 MBH (732.6 kW), 3000 MBH (879.2 kW)</td>
<td>750 MBH (220 kW),</td>
</tr>
<tr>
<td>4 Fuel Type (tipo de combustible)</td>
<td>Natural Gas (gas natural) o Propane (propano)</td>
<td>Gas natural en modelos estándar y de combustible dual, propano en modelos de solo propano.</td>
</tr>
<tr>
<td>5 Boiler Mode (modo de caldera)</td>
<td>Constant Setpoint (temperatura fijada), Remote Setpoint (ajuste remoto de temperatura fijada), Direct Drive (accionamiento directo), Combination (combinación), Outdoor Reset (reset exterior)</td>
<td>Constant Setpoint (temperatura fijada constante)</td>
</tr>
<tr>
<td>6 Remote Signal (señal remota)</td>
<td>4 – 20 mA/1 – 5V, 0 -20 mA/0 – 5V, Red (BMS Legacy) con entrada PMW</td>
<td>4 – 20 mA, 1-5V</td>
</tr>
<tr>
<td>7 Outdoor Sensor (sensor exterior)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>8 * Bldg Ref Temp (temperatura de referencia del edificio)</td>
<td>40°F (4.4°C)</td>
<td>70°F (21.1°C)</td>
</tr>
<tr>
<td>9 * Reset Ratio (ajuste de acción integral)</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>10 * System Start Tmp (temperatura de inicio del sistema)</td>
<td>30°F (-1.1°C)</td>
<td>60°F (15.6°C)</td>
</tr>
</tbody>
</table>
TABLA 2-4: Menú CONFIGURATION (configuración)

<table>
<thead>
<tr>
<th>PANTALLA DE Opciones del Menú</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>[Si Outdoor Sensor (sensor exterior) = Enabled (habilitado)]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Setpt Lo Limit (límite inferior de temperatura fijada)</td>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>13</td>
<td>Setpt Hi Limit (límite superior de temperatura fijada)</td>
<td>Setpt Lo Limit (límite inferior de temperatura fijada)</td>
</tr>
<tr>
<td>14</td>
<td>Temp Hi Limit (límite superior de temperatura)</td>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>15</td>
<td>Max Valve Position (posición máxima de válvula)</td>
<td>40%</td>
</tr>
<tr>
<td>16</td>
<td>Pump Delay Timer (temporizador de retardo de bomba)</td>
<td>0 seg.</td>
</tr>
<tr>
<td>17</td>
<td>Aux Start On Dly (arranque auxiliar diferido)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fail Safe Mode (modo mecanismo de seguridad)</td>
<td>Shutdown (apagado) o Constant Setpt (temperatura fijada constante)</td>
</tr>
<tr>
<td>19</td>
<td>Analog Output (salida analógica)</td>
<td>Off (apagada), Setpoint (temperatura fijada), Outlet Temp (temperatura de salida), Valve Pos 4-20mA (posición de válvula de 4-20mA), Valve Pos 0-10v (posición de válvula de 0-10v).</td>
</tr>
<tr>
<td>20</td>
<td>Low Fire Timer (temporizador de flama baja)</td>
<td>2 seg.</td>
</tr>
<tr>
<td>21</td>
<td>Setpt Limiting (limitación de temperatura fijada)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>22</td>
<td>Setpt Limit Band (banda de límite de temperatura fijada)</td>
<td>0°F (0°C)</td>
</tr>
<tr>
<td>23</td>
<td>Network Timeout (tiempo de permanencia de la red)</td>
<td>5 seg.</td>
</tr>
<tr>
<td>24</td>
<td>Shutoff Dly Temp (temperatura de apagado diferido)</td>
<td>0°F (0°C)</td>
</tr>
<tr>
<td>25</td>
<td>Deadband High (banda inactiva superior)</td>
<td>0°F (0°C)</td>
</tr>
<tr>
<td>26</td>
<td>Deadband Low (banda inactiva inferior)</td>
<td>0°F (0°C)</td>
</tr>
<tr>
<td>27</td>
<td>IGST Version (versión de IGST)</td>
<td>Muestra la versión de IGST</td>
</tr>
<tr>
<td>28</td>
<td>IGN Time Setting (configuración de tiempo de encendido)</td>
<td>Muestra 4 seg o 7 seg, dependiendo del arnés de cableado instalado</td>
</tr>
<tr>
<td>29</td>
<td>Slow Shutdown (apagado lento)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>30</td>
<td>Slow Sht Duration (duración de apagado lento)</td>
<td>0 seg.</td>
</tr>
<tr>
<td>31</td>
<td>Slow Sht Threshold (umbral de apagado lento)</td>
<td>40%</td>
</tr>
</tbody>
</table>
SECCIÓN 2: OPERACIÓN

TABLA 2-4: Menú CONFIGURATION (configuración)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 O₂ Warnings (advertencias de O₂)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>33 O₂ Trim ID (identificación de ajuste de O₂)</td>
<td>Muestra un código de identificación de 4 dígitos de AERtrim</td>
<td></td>
</tr>
<tr>
<td>34 Fixed ID (Identificación fija)</td>
<td>Muestra el código de identificación fijo de 4 dígitos de la unidad</td>
<td></td>
</tr>
<tr>
<td>35 O₂ Trim Key (clave de ajuste de O₂)</td>
<td>Muestra la clave de licencia de 4 dígitos de AERtrim</td>
<td></td>
</tr>
<tr>
<td>36 BST Trim Menu (menú de ajuste de O₂)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>37 BST Menu (menú BST)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
</tbody>
</table>

NOTA

Las opciones de menú Bldg Ref Temp (temperatura de referencia del edificio) y Reset Ratio (ajuste de acción integral) se muestran únicamente cuando la opción #7, Outdoor Sensor (sensor exterior), está configurada en Enabled (habilitado).

¡PRECAUCIÓN!

NO cambie la configuración predeterminada de la opción del menú Analog Output (salida analógica), la cual es Valve Position 0-10V (posición de válvula 0-10v).

2.7 Menú TUNING (afinación)

Las opciones del menú Tuning (afinación) están configuradas en cada unidad de manera individual. No cambie estas entradas en el menú, a menos que personal capacitado por la empresa así se lo pida de manera específica.

El Apéndice A-4 muestra una descripción completa de cada opción.

TABLA 2-5: Menú TUNING (afinación)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prop Band (banda proporcional)</td>
<td>1°F (0.55°C)</td>
<td>120°F (66°C)</td>
<td>70°F (38.5°C)</td>
</tr>
<tr>
<td>2 Integral Gain (ganancia integral)</td>
<td>0.00</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3 Derivative Time (tiempo derivativo)</td>
<td>0.0 min.</td>
<td>2.00 min.</td>
<td>0.0min.</td>
</tr>
<tr>
<td>4 Warmup Prop Band (banda proporcional de precalentamiento)</td>
<td>1°F (0.55°C)</td>
<td>120°F (66°C)</td>
<td>95°F (52°C)</td>
</tr>
<tr>
<td>5 Warmup Int Gain (ganancia interna de precalentamiento)</td>
<td>0.00</td>
<td>2.00</td>
<td>0.50</td>
</tr>
<tr>
<td>6 Warmup PID Timer (temporizador PID de precalentamiento)</td>
<td>0 seg.</td>
<td>240 seg.</td>
<td>20 seg.</td>
</tr>
<tr>
<td>7 Reset Defaults? (¿restablecer valores predeterminados?)</td>
<td>Yes (sí), No, Are You Sure? (¿está seguro?)</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
2.8 Menú COMBUSTION CAL (calibración de combustión)

El menú Combustion Cal (calibración de la combustión) está protegido con una contraseña nivel 2 (6817), la cual se introduce para ver o cambiar las opciones del menú que se muestran en las Tablas 2-6, 2-7 y 2-8. Estas opciones del menú se usan para variar la velocidad del motor del ventilador de la unidad, con base en la temperatura del aire y la densidad del aire en las posiciones de la válvula aire-combustible (% apertura) que se especifique. Esto se logra proporcionando un voltaje de convertidor DC al motor, el cual ajusta la velocidad de rotación del ventilador y maximiza la eficiencia de combustión, lo que garantiza que la unidad cumpla con las emisiones de óxido de nitrógeno (NO\textsubscript{x}) y monóxido de carbono (CO) que se especifican en las instrucciones de calibración de combustión en la Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).

Los valores de CAL Voltage (calibración del voltaje) vienen predeterminados de fábrica y se ajustan en cada unidad antes del envío, así que pueden ser distintos de los valores predeterminados que se muestran en las siguientes tablas. El Apéndice A-5 muestra una descripción completa de cada opción.

2.8.1 Menú CAL COMBUSTION (calibración de combustión) de BMK 750/1000

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>GAS NATURAL</th>
<th>PROPANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAL Voltage (calibración de voltaje) 18%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.10</td>
</tr>
<tr>
<td>2</td>
<td>CAL Voltage (calibración de voltaje) 30%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.55</td>
</tr>
<tr>
<td>3</td>
<td>CAL Voltage (calibración de voltaje) 45%</td>
<td>0.25</td>
<td>10.00</td>
<td>3.10</td>
</tr>
<tr>
<td>4</td>
<td>CAL Voltage (calibración de voltaje) 60%</td>
<td>0.25</td>
<td>10.00</td>
<td>3.50</td>
</tr>
<tr>
<td>5</td>
<td>CAL Voltage (calibración de voltaje) 80%</td>
<td>0.25</td>
<td>10.00</td>
<td>4.60</td>
</tr>
<tr>
<td>6</td>
<td>CAL Voltage (calibración de voltaje) 100%</td>
<td>0.25</td>
<td>10.00</td>
<td>5.60</td>
</tr>
<tr>
<td>7</td>
<td>SET Valve Position (establecer posición de válvula)</td>
<td></td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>Blower Output (potencia de salida del ventilador)</td>
<td>Voltaje de salida del ventilador del dispositivo de control</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>Set Stdby Volt (establecer voltaje de reposo)</td>
<td>0 V</td>
<td>10.0 V</td>
<td>2.00</td>
</tr>
<tr>
<td>10</td>
<td>Oxygen Level (nivel de oxígeno)</td>
<td>0%</td>
<td>25%</td>
<td>0.0</td>
</tr>
</tbody>
</table>

2.8.2 Menús CAL COMBUSTION (calibración de combustión) de BMK 1500/2000

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>BMK 1500</th>
<th>BMK 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAL Voltage (calibración de voltaje) 16%</td>
<td>0.25</td>
<td>10.00</td>
<td>1.80</td>
</tr>
<tr>
<td>2</td>
<td>CAL Voltage (calibración de voltaje) 18%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>CAL Voltage (calibración de voltaje) 30%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.30</td>
</tr>
<tr>
<td>4</td>
<td>CAL Voltage (calibración de voltaje) 40%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.50</td>
</tr>
<tr>
<td>5</td>
<td>CAL Voltage (calibración de voltaje) 50%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.90</td>
</tr>
</tbody>
</table>
SECCIÓN 2: OPERACIÓN

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>Parámetro</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Predeterminado</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CAL Voltage (calibración de voltaje) 70%</td>
<td>0.25</td>
<td>10.00</td>
<td>3.80 6.40</td>
</tr>
<tr>
<td>6</td>
<td>CAL Voltage (calibración de voltaje) 100%</td>
<td>0.25</td>
<td>10.00</td>
<td>7.90 9.50</td>
</tr>
<tr>
<td>7</td>
<td>SET Valve Position (establecer posición de válvula)</td>
<td>0%</td>
<td>100%</td>
<td>Variable</td>
</tr>
<tr>
<td>8</td>
<td>Blower Output (potencia de salida del ventilador)</td>
<td>Muestra el valor en ese momento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Set Stdby Volt (establecer voltaje de reposo)</td>
<td>0</td>
<td>10.00 V</td>
<td>2.00 V 2.00 V</td>
</tr>
<tr>
<td>10</td>
<td>Oxygen Level (nivel de oxígeno)</td>
<td>Muestra el valor en ese momento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLA 2-7b: Menú COMBUSTION CAL (calibración de combustión): BMK 1500/2000

PANTALLA DE OPCIONES DEL MENÚ

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>Parámetro</th>
<th>Predeterminado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GAS NATURAL*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMK 1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMK 1500</td>
</tr>
<tr>
<td>1</td>
<td>CAL Voltage (calibración de voltaje): 16%</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>CAL Voltage (calibración de voltaje): 18%</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>CAL Voltage (calibración de voltaje) 30%</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>CAL Voltage (calibración de voltaje) 40%</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>CAL Voltage (calibración de voltaje) 50%</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>CAL Voltage (calibración de voltaje) 70%</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>SET Valve Position (establecer posición de válvula)</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Blower Output (potencia de salida del ventilador)</td>
<td>Muestra el valor en ese momento</td>
</tr>
<tr>
<td>9</td>
<td>Set Stdby Volt (establecer voltaje de reposo)</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Oxygen Level (nivel de oxígeno)</td>
<td>Muestra el valor en ese momento</td>
</tr>
</tbody>
</table>

* Los valores predeterminados para Gas Natural en unidades de Combustible Dual son diferentes de los valores predeterminados para Gas Natural en unidades monocombustibles. Estos valores NO aplican a unidades monocombustibles.
2.8.3 Menús CAL COMBUSTION (calibración de combustión) de BMK 2500/3000

TABLA 2-8a: Menú COMBUSTION CAL (calibración de combustión): BMK 2500/3000

MONOCOMBUSTIBLE: GAS NATURAL

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMK 2500</td>
</tr>
<tr>
<td>1 CAL Voltage (calibración de voltaje) 16%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>2 CAL Voltage (calibración de voltaje) 30%</td>
<td>0.25</td>
<td>10.00</td>
<td>4.10</td>
</tr>
<tr>
<td>3 CAL Voltage (calibración de voltaje) 40%</td>
<td>0.25</td>
<td>10.00</td>
<td>4.80</td>
</tr>
<tr>
<td>4 CAL Voltage (calibración de voltaje) 50%</td>
<td>0.25</td>
<td>10.00</td>
<td>5.30</td>
</tr>
<tr>
<td>5 CAL Voltage (calibración de voltaje) 70%</td>
<td>0.25</td>
<td>10.00</td>
<td>6.80</td>
</tr>
<tr>
<td>6 CAL Voltage (calibración de voltaje) 100%</td>
<td>0.25</td>
<td>10.00</td>
<td>8.50</td>
</tr>
<tr>
<td>7 SET Valve Position (establecer posición de válvula)</td>
<td>0%</td>
<td>100%</td>
<td>Variable</td>
</tr>
<tr>
<td>8 Blower Output (potencia de salida del ventilador)</td>
<td></td>
<td></td>
<td>Muestra el valor en ese momento</td>
</tr>
<tr>
<td>9 Set Stdby Volt (establecer voltaje de reposo)</td>
<td>0</td>
<td>10.00 V</td>
<td>2.00 V</td>
</tr>
<tr>
<td>10 Oxygen Level (nivel de oxígeno)</td>
<td></td>
<td></td>
<td>Muestra el valor en ese momento</td>
</tr>
</tbody>
</table>

TABLA 2-8b: Menú COMBUSTION CAL (calibración de combustión): BMK 2500/3000

COMBUSTIBLE DUAL

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMK 2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAS NATURAL*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMK 2500</td>
</tr>
<tr>
<td>1 CAL Voltage (calibración de voltaje) 14%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>CAL Voltage (calibración de voltaje) 16%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.15</td>
</tr>
<tr>
<td>CAL Voltage (calibración de voltaje) 18%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>CAL Voltage (calibración de voltaje) 20%</td>
<td>0.25</td>
<td>10.00</td>
<td>2.10</td>
</tr>
<tr>
<td>CAL Voltage (calibración de voltaje) 22%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>2 CAL Voltage (calibración de voltaje) 30%</td>
<td>0.25</td>
<td>10.00</td>
<td>3.90</td>
</tr>
<tr>
<td>3 CAL Voltage (calibración de voltaje) 45%</td>
<td>0.25</td>
<td>10.00</td>
<td>5.60</td>
</tr>
<tr>
<td>4 CAL Voltage (calibración de voltaje) 65%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>CAL Voltage (calibración de voltaje) 70%</td>
<td>0.25</td>
<td>10.00</td>
<td>6.60</td>
</tr>
<tr>
<td>5 CAL Voltage (calibración de voltaje) 75%</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
</tr>
</tbody>
</table>
SECCIÓN 2: OPERACIÓN

<table>
<thead>
<tr>
<th></th>
<th>CAL Voltage (calibración de voltaje) 85%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.25</td>
<td>10.00</td>
<td>–</td>
<td>8.00</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>SET Valve Position (establecer posición de válvula)</td>
<td>0</td>
<td>100</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

8 Blower Output (potencia de salida del ventilador)
9 Set Stdby Volt (establecer voltaje de reposo)
10 Oxygen Level (nivel de oxígeno)

* Los valores predeterminados para Gas Natural en unidades de Combustible Dual son diferentes de los valores predeterminados para Gas Natural en unidades monocombustibles. Estos valores NO APLICAN en unidades monocombustibles.

2.9 Menú BST (Tecnología de Encendido Secuencial de Calderas)

El menú BST debe estar enabled (habilitado) para que se muestre y se tenga acceso a él. La opción BST Menu (menú BST), localizada al final del menú Configuration (número 37 en la Tabla 2-4), debe estar configurada en Enabled (habilitada).

El menú BST contiene todas las opciones necesarias para configurar, operar y monitorear la funcionalidad del Sistema BST. Hay más de 50 categorías en este menú, y seleccionar alguna en particular para inspeccionarla o modificar puede tomar tiempo. Como resultado, el menú BST se segmentó en CINCO grupos lógicos con base en su funcionalidad.

Los cinco grupos de opciones son:

1. Opciones de BST Monitor (dispositivo de control de BST)
2. "SETUP MENU*" (MENÚ CONFIGURAR BST)
3. "OPERATING MENU*" (MENÚ OPERACIÓN)
4. "TEMP CTRL MENU*" (MENÚ CONTROL DE TEMPERATURA)
5. "BST COMM MENU*" (MENÚ COMUNICACIÓN DE BST)

Estos grupos de opciones que se presentan en la pantalla aparecen en letras MAYÚSCULAS y están delimitados con un asterisco* para identificarlos fácilmente en la lista.

Las opciones dentro del grupo 1 (opciones de dispositivo de control de BST) siempre aparecen dentro del menú, ya que son esenciales para la operación correcta del sistema. Por lo tanto, el encabezado BST Monitor Items (opciones de dispositivo de control de BST) como tal no aparece en la pantalla.

Las opciones de los grupos del 2 al 5 no se muestran a menos que un grupo en particular de opciones se haya habilitado en el teclado del Controlador C-More.

<table>
<thead>
<tr>
<th></th>
<th>PANTALLA DE Opciones del MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BST Mode (modo BST)</td>
<td>Off (apagado)</td>
<td>BST Client (Cliente BST) BST Manager (Administrador BST)</td>
</tr>
<tr>
<td>2</td>
<td>BST Setpoint (temperatura fijada de BST)</td>
<td>BST Setpt Lo Limit (límite inferior de temperatura fijada de BST) Setpt Hi Limit (límite superior de temperatura fijada de BST)</td>
<td>130°F (54.4°C)</td>
</tr>
<tr>
<td>3</td>
<td>Header Temp (temperatura de cabezal)</td>
<td>Solo lectura. Temperatura en ese momento del cabezal en °F</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>BST Fire Rate (nivel de flama de BST)</td>
<td>0 100%</td>
<td>% de nivel de flama</td>
</tr>
<tr>
<td>5</td>
<td>BST Ave Fire Rate (nivel de flama promedio de BST)</td>
<td>0 100%</td>
<td>% de nivel de flama promedio</td>
</tr>
<tr>
<td>6</td>
<td>BST Outdoor Temp (temperatura exterior de BST)</td>
<td>Solo lectura. Temperatura exterior en ese momento en °F</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Units Available (unidades disponibles)</td>
<td>0 8</td>
<td>Unidades presentes</td>
</tr>
<tr>
<td>8</td>
<td>Units Ignited (unidades encendidas)</td>
<td>0 8</td>
<td>Unidades con flama</td>
</tr>
</tbody>
</table>
SECCIÓN 2: OPERACIÓN

TABLA 2-9: BST Menu (menú BST)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 BST Valve State (estatus de válvula BST)</td>
<td>Mínimo 0 (CERRADA)</td>
<td>Máximo 1 (ABIERTA)</td>
</tr>
<tr>
<td>10 1 BST Comm Errors 8 (1 errores de comunicación de BST 8)</td>
<td>Mínimo 0</td>
<td>Máximo 9</td>
</tr>
<tr>
<td>11 1 BST Units 8 (1 unidades BST 8)</td>
<td>Mínimo 0 – 8 (ver * NOTA más adelante)</td>
<td>Máximo 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 * BST SETUP MENU* (MENÚ CONFIGURAR BST)</th>
<th>13 BST Setpoint Mode (modo de temperatura fijada de BST)</th>
<th>Seleccionado o Límites Disponibles</th>
<th>Predeterminado</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 BST Remote Signl (señal remota de BST)</td>
<td>Constant Setpoint (temperatura fijada constante)</td>
<td>Remote Setpoint (temperatura fijada)</td>
<td>Outdoor Reset (reset exterior)</td>
</tr>
<tr>
<td>15 Head Temp Source (fuente de temperatura de cabecal)</td>
<td>0-20 mA/1-5 VDC</td>
<td>Network (red)</td>
<td>Network (red)</td>
</tr>
<tr>
<td>16 Mdbus Temp Units (Unidades de temperatura de Modbus)</td>
<td>Network (red)</td>
<td>FFWD Temp (temperatura de compensación dinámica)</td>
<td>FFWD Temp (temperatura de compensación dinámica)</td>
</tr>
<tr>
<td>17 Header Temp Addr (dirección de temperatura de cabezal)</td>
<td>0</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>18 Header Temp Punto (punto de temperatura de cabezal)</td>
<td>0</td>
<td>255</td>
<td>14</td>
</tr>
<tr>
<td>19 BST Outdoor Sens (sensor exterior de BST)</td>
<td>Disabled (deshabilitado)</td>
<td>Enabled (habilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>20 Outd Trmp Source (fuente de temperatura exterior)</td>
<td>Outdoor Temp (temperatura exterior)</td>
<td>Network (red)</td>
<td>Outdoor Temp (temperatura exterior)</td>
</tr>
<tr>
<td>21 Outdoor Trmp Addr (dirección de temperatura exterior)</td>
<td>0</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>22 Outdoor Trmp Pnt (punto de temperatura exterior)</td>
<td>0</td>
<td>255</td>
<td>215</td>
</tr>
<tr>
<td>23 BST Auto Mstr (transmisor Modbus automático de BST)</td>
<td>No</td>
<td>Yes (si) NOTA! Se debe instalar un transmisor de temperatura Modbus junto con esta herramienta.</td>
<td>No</td>
</tr>
<tr>
<td>24 BST Auto Timer (temporizador automático de BST)</td>
<td>10 seg</td>
<td>120 seg</td>
<td>30 seg</td>
</tr>
<tr>
<td>25 Remote Intlk Use (uso de interconexión remota)</td>
<td>Boiler Shutdown (apagado de la caldera)</td>
<td>System Shutdown (apagado del sistema)</td>
<td>System Shutdown (apagado del sistema)</td>
</tr>
<tr>
<td>26 One Boiler Mode (modo de una caldera)</td>
<td>Off (apagado)</td>
<td>On-Outlet Temp (temperatura de salida encendido)</td>
<td>On-Avg Temp (temperatura promedio encendido)</td>
</tr>
<tr>
<td>27 1 Blr Threshold (1 umbral de calderas)</td>
<td>10</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>28 Setpoint Setback (reducción de temperatura fijada)</td>
<td>Disable (deshabilitar)</td>
<td>Enable (habilitar)</td>
<td>Disable (deshabilitar)</td>
</tr>
<tr>
<td>29 Setback Setpoint (temperatura fijada de reducción)</td>
<td>BST Setpt Lo Limit (límite inferior de temperatura fijada de BST)</td>
<td>BST Setpt Hi Limit (límite superior de temperatura fijada de BST)</td>
<td>130°F (54.4°C)</td>
</tr>
<tr>
<td>30 Setback Start (inicio de reducción)</td>
<td>12:00am</td>
<td>11:59pm</td>
<td>12:00am</td>
</tr>
<tr>
<td>31 Setback End (final de reducción)</td>
<td>12:00am</td>
<td>11:59pm</td>
<td>12:00am</td>
</tr>
<tr>
<td>32 Rate Threshold (umbral de potencia)</td>
<td>1°F (0.55°C)</td>
<td>30°F (16.5°C)</td>
<td>15°F (8.25°C)</td>
</tr>
</tbody>
</table>

| 33 * OPERATING MENU* (MENÚ OPERACIÓN) | Disable (deshabilitado) | Enable (habilitado) | Disable (deshabilitado) |
SECCIÓN 2: OPERACIÓN

TABLA 2-9: BST Menu (menú BST)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 BST Next On VP (posición de la válvula para encender la siguiente unidad en BST)</td>
<td>Mínimo: 16%</td>
<td>Máximo: 100%</td>
</tr>
<tr>
<td>35 BST Max Boilers (máximo de calderas en BST)</td>
<td>Mínimo: 1</td>
<td>Máximo: 8</td>
</tr>
<tr>
<td>36 BST On Delay (BST diferido)</td>
<td>Mínimo: 30 seg</td>
<td>Máximo: 300 seg</td>
</tr>
<tr>
<td>37 BST On Timeout (tiempo de permanencia de BST)</td>
<td>Mínimo: 15 seg</td>
<td>Máximo: 300 seg</td>
</tr>
<tr>
<td>38 Valve Override (control manual de válvula)</td>
<td>Off (apagado)</td>
<td>Closed (cerrado)</td>
</tr>
<tr>
<td>39 Valve Off Delay (válvula diferida)</td>
<td>Mínimo: 0</td>
<td>Máximo: 15 min.</td>
</tr>
<tr>
<td>40 BST Sequencing (encendido secuencia de BST)</td>
<td>Run Hours (horas de ejecución)</td>
<td>Unit Size (tamaño de la unidad)</td>
</tr>
<tr>
<td>41 Select Lead Unit (seleccionar unidad maestra)</td>
<td>Mínimo: 0</td>
<td>Máximo: 127</td>
</tr>
<tr>
<td>42 Select Lag Unit (seleccionar unidad esclava)</td>
<td>Mínimo: 0</td>
<td>Máximo: 127</td>
</tr>
<tr>
<td>43 Lead/Lag Hours (horas de maestra/esclava)</td>
<td>Mínimo: 25 horas</td>
<td>Máximo: 225 horas</td>
</tr>
<tr>
<td>44 TEMP CTRL MENU (MENÚ CONTROL DE TEMPERATURA)</td>
<td>Disabled (deshabilitado)</td>
<td>Enabled (habilitado)</td>
</tr>
<tr>
<td>45 BST Temp Hi Limit (límite superior de temperatura de BST)</td>
<td>40°F (4.4°C)</td>
<td>210°F (98.9°C)</td>
</tr>
<tr>
<td>46 BST Setpt Lo Limit (límite inferior de temperatura fijada de BST)</td>
<td>40°F (4.4°C)</td>
<td>BST Setpt Hi Limit (límite superior de temperatura fijada de BST)</td>
</tr>
<tr>
<td>47 BST Setpt Hi Limit (límite superior de temperatura fijada de BST)</td>
<td>BST Setpt Lo Limit (límite inferior de temperatura fijada de BST)</td>
<td>220°F (104.4°C)</td>
</tr>
<tr>
<td>48 BST Prop Band (banda proporcional de BST)</td>
<td>1°F (-17.2°C)</td>
<td>120°F (48.9°C)</td>
</tr>
<tr>
<td>49 BST Intgral Gain (ganancia integral de BST)</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>50 BST Deriv Time (temporizador de convertidor de BST)</td>
<td>0.00 Min</td>
<td>2.00 Min</td>
</tr>
<tr>
<td>51 BST Deadband Hi (banda inactiva superior de BST)</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>52 BST Deadband Lo (banda inactiva inferior de BST)</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>53 Deadband En Time (tiempo de habilitación de banda inactiva)</td>
<td>0</td>
<td>120 seg</td>
</tr>
<tr>
<td>54) BST FR Up Rate (nivel de encendido de flama de BST)</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>55 BST Bldg Ref Tmp (temperatura de referencia del edificio de BST)</td>
<td>40°F (4.4°C)</td>
<td>230°F (110°C)</td>
</tr>
<tr>
<td>56 BST Reset Ratio (ajuste de acción integral de BST)</td>
<td>0.1</td>
<td>9.9</td>
</tr>
<tr>
<td>57 System Start Tmp (temperatura de inicio del sistema)</td>
<td>30°F (-1.1°C)</td>
<td>120°F (48.9°C)</td>
</tr>
</tbody>
</table>

Guía de operación, mantenimiento y servicio de Benchmark 750-3000 Operation, Service & Maintenance Guide-Latin America

OMM-0132_A AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 Página 27 de 165
GF-206-LA-LA Tel.: 800-526-0288 01/02/2018
TABLA 2-9: BST Menu (menú BST)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínimo</td>
<td>Máximo</td>
</tr>
<tr>
<td>59 Comm Address (dirección de comunicación)</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>60 BST Mín Addr (dirección mínima de BST)</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>61 BST Máx Addr (dirección máxima de BST)</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>62 SSD Address (dirección de SSD)</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>63 SSD Poll Control (control por sondeo de SSD)</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>64 Err Threshold (umbral de error)</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>65 SSD Temp Format (formato de temperatura de SSD)</td>
<td>Grados</td>
<td>Puntos</td>
</tr>
<tr>
<td>66 BST Upld Timer (temporizador de carga de BST)</td>
<td>0</td>
<td>9999 seg</td>
</tr>
</tbody>
</table>

* NOTA:
La opción de menú 1 BST Units 8 (1 unidades BST 8) muestra el estatus en ese momento de cada unidad que controla el sistema BST, hasta un máximo de 8 unidades) Los caracteres que se pueden mostrar son:
- = Desconectada
* = No disponible (falla, etc.)
0 = Apagada
1 = Encendida
A = Maestra encendida
a = Maestra apagada
B = Esclava encendida
b = Esclava apagada
S = límite de temperatura fijada activo

El siguiente ejemplo muestra el estatus de 5 unidades que son controlados por BST, donde
Unidad 1 y 3 están encendidas
Unidad 2 está apagada
Unidad 4 está no disponible
Unidad 5 está en configuración maestra encendida
Unidad 6 está en configuración maestra apagada

1 BST Units 8 (1 unidades BST 8)

| 1 | 0 | 1 | * | A | b |
2.10 Menú CALIBRATION (calibración)

El menú Calibration (calibración) se usa por el personal de mantenimiento capacitado por la empresa para ajustar o restablecer los parámetros que se mencionan a continuación.

El Apéndice A-6 muestra una descripción completa de cada opción

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Stepper Fbk (retroalimentación de pasos)</td>
<td>Calibración 0%, Verificación 50%, Calibración 100%</td>
<td>Calibración 0%</td>
</tr>
<tr>
<td>2 Purge Timer (temporizador de purga)</td>
<td>5 seg.</td>
<td>60 seg</td>
</tr>
<tr>
<td>3 Post Purge Timer (temporizador de post purga)</td>
<td>0 seg.</td>
<td>60 seg</td>
</tr>
<tr>
<td>4 IGN Position (posición de encendido)</td>
<td>5%</td>
<td>60%</td>
</tr>
<tr>
<td>5 Ign Pos Hold Tmr (temporizador de retención después de encendido)</td>
<td>0 seg.</td>
<td>60 seg</td>
</tr>
<tr>
<td>6 FFWD Temp Display (pantalla de temperatura de compensación dinámica)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>7 Outlet Temp Display (pantalla de temperatura de salida)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>8 Inlet Temp Display (pantalla de temperatura de entrada)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>9 Valv Pos Out Dsp (pantalla de potencia de salida de la posición de la válvula)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Enabled (habilitado)</td>
</tr>
<tr>
<td>10 Exhaust Temp Display (pantalla de temperatura de salida de gases)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Disabled (deshabilitado)</td>
</tr>
<tr>
<td>11 Exhaust Safety (seguridad de salida de gases)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Enabled (habilitado)</td>
</tr>
<tr>
<td>12 Flue Material (material para tubo de salida de gases)</td>
<td>PVC, CPVC; PolyPro (polipropileno); Stainless (acero inoxidable)</td>
<td>PVC, CPVC</td>
</tr>
<tr>
<td>13 Exhst Fault Temp (temperatura para falla de salida de gases)</td>
<td>100 °F</td>
<td>500 °F</td>
</tr>
<tr>
<td>14 Exhst Module Temp (temperatura de módulo de salida de gases)</td>
<td>100 °F</td>
<td>500 °F</td>
</tr>
<tr>
<td>15 Exhst Warn Temp (temperatura de advertencia de salida de gases)</td>
<td>100 °F</td>
<td>500 °F</td>
</tr>
<tr>
<td>16 Exhst Temp VP Adj (ajuste de posición de válvula por temperatura de salida de gases)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>17 Exhst Adj Rate (rango de ajuste de salida de gases)</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>18 VP Change Rate (nivel de cambio de posición de válvula)</td>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>19 VP Up Rate (nivel de incremento de posición de válvula)</td>
<td>0.5</td>
<td>60.0</td>
</tr>
</tbody>
</table>
SECCIÓN 2: OPERACIÓN

TABLA 2-10: Menú CALIBRATION (calibración)

<table>
<thead>
<tr>
<th>PANTALLA DE OPCIONES DEL MENÚ</th>
<th>SELECCIONES O LÍMITES DISPONIBLES</th>
<th>PREDETERMINADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 VP Down Rate (nivel de disminución de posición de válvula)</td>
<td>0.5</td>
<td>60.0</td>
</tr>
<tr>
<td>21 Purge Blw Offst (compensación de ventilador de purga)</td>
<td>-1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>22 4-20mA Purge Pct (porcentaje de purga a 4-20mA)</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>23 PWM In Adj (ajuste en entrada PWM)</td>
<td>-5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>24 Analog In Adj (ajuste de entrada analógica)</td>
<td>-5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>25 Flow In Adj (ajuste de entrada de flujo)</td>
<td>-5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>26 Supply Gas Pressure In Adj (ajuste de entrada de presión de gas de suministro)</td>
<td>-5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>27 Gas Plate dp In Adj (ajuste de entrada Dp de placa de gas)</td>
<td>-5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>28 mA Out Adj (ajuste de salida mA)</td>
<td>-1.0 mA</td>
<td>1.0 mA</td>
</tr>
<tr>
<td>29 A/F Sensitivity (sensibilidad aire-combustible)</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td>30 Power Reset (restablecer energía)</td>
<td>Automatic (automático) o Manual (manual)</td>
<td>Automatic (automático)</td>
</tr>
<tr>
<td>31 Water Temp Reset (restablecer temperatura de agua)</td>
<td>Automatic (automático) o Manual (manual)</td>
<td>Automatic (automático)</td>
</tr>
<tr>
<td>33 Min Off Time (tiempo mínimo de apagado)</td>
<td>0 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>34 Stop Level (nivel de tope)</td>
<td>0%</td>
<td>Start Level (nivel de inicio)</td>
</tr>
<tr>
<td>35 Start Level (nivel de inicio)</td>
<td>Stop Level (nivel de tope)</td>
<td>40%</td>
</tr>
<tr>
<td>36 Skip Range Cntr (control de rango de salto)</td>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>37 Skip Range Span (amplitud de rango de salto)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>38 Skip Speed (velocidad de salto)</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>39 O2 Gain (ganancia de O2)</td>
<td>0.500</td>
<td>1.500</td>
</tr>
<tr>
<td>40 O2 Offset (compensación de O2)</td>
<td>-24.0</td>
<td>+2.0</td>
</tr>
<tr>
<td>41 O2 Sensor (sensor de O2)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Dependiendo del tipo de unidad y su tamaño</td>
</tr>
<tr>
<td>42 Cal Temp Sensors (calibración de sensores de temperatura)</td>
<td>Off (apagado) o Start (inicio)</td>
<td>Off (apagado)</td>
</tr>
<tr>
<td>43 FFWD Temp Offset (compensación de temperatura para compensación dinámica)</td>
<td>-20</td>
<td>+20</td>
</tr>
<tr>
<td>44 Exhst Tmp Offset (compensación de temperatura de salida de gases)</td>
<td>-20</td>
<td>+20</td>
</tr>
<tr>
<td>PANTALLA DE OPCIONES DEL MENÚ</td>
<td>SELECCIONES O LÍMITES DISPONIBLES</td>
<td>PREDETERMINADO</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>45 Outdr Air Offset</td>
<td>-20 - +20</td>
<td>0</td>
</tr>
<tr>
<td>46 Inlet Air Offset</td>
<td>-20 - +20</td>
<td>0</td>
</tr>
<tr>
<td>47 Inlet Wtr Offset</td>
<td>-20 - +20</td>
<td>0</td>
</tr>
<tr>
<td>48 Outlet Wtr Offset</td>
<td>-20 - +20</td>
<td>0</td>
</tr>
<tr>
<td>49 24 hr Max Cycles</td>
<td>0 - 9999</td>
<td>0</td>
</tr>
<tr>
<td>50 24 hr Max Ovrtemp</td>
<td>0 - 9999</td>
<td>0</td>
</tr>
<tr>
<td>51 0-10v Out Test</td>
<td>0.0 - 10.0</td>
<td>0.00</td>
</tr>
<tr>
<td>52 Spark Monitor</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
<td>Dependiendo del tipo de unidad y su tamaño</td>
</tr>
<tr>
<td>53 Min Spark Amps</td>
<td>0.0 Amp 2.5 Amp 0.10 Amp</td>
<td>0.10 Amp</td>
</tr>
<tr>
<td>54 Max Spark Amps</td>
<td>0.0 Amp 2.5 Amp 0.40 Amp</td>
<td>0.40 Amp</td>
</tr>
</tbody>
</table>
SECCIÓN 3: MODOS DE OPERACIÓN

3.1 INTRODUCCIÓN

La caldera puede ser operada en uno de seis modos diferentes. Las siguientes secciones describen cada uno de estos modos de operación. Cada caldera se envía desde la fábrica ya probada y configurada para el modo de operación que se solicitó. Todos los parámetros relacionados con la temperatura se encuentran configurados en valores predeterminados desde fábrica, los cuales funcionan bien para la mayoría de las aplicaciones. Sin embargo, puede ser necesario cambiar ciertos parámetros para personalizar la unidad según el medio ambiente del sistema. Después de leer esta sección, los parámetros se pueden personalizar para que se adapten a las necesidades de la aplicación específica. Se incluye una lista completa de los parámetros relacionados con la temperatura, junto con sus descripciones, en el Apéndice A, y los valores predeterminados desde fábrica se enumeran en las Secciones 2.4 – 2.10, que se presentaron antes.

3.2 MODO INDOOR/OUTDOOR RESET (RESET INTERIOR/EXTERIOR)

Este modo de operación se basa en las temperaturas del aire exterior. Conforme la temperatura del aire exterior disminuya, la temperatura del cabezal de suministro incrementará y viceversa. En este modo, es necesario instalar un sensor de aire exterior, así como seleccionar una temperatura de referencia del edificio y un ajuste de acción integral.

3.2.1 Ajuste de acción integral (reset ratio)

El ajuste de acción integral es un número ajustable entre 0.1 y 9.9. Una vez ajustada, la temperatura del cabezal del suministro aumentará en este número por cada grado que disminuya la temperatura de aire exterior. Por ejemplo, si se usa un ajuste de acción integral de 1.6, por cada grado que disminuya la temperatura de aire exterior, la temperatura del cabezal de suministro subirá en incrementos de 1.6 grados.

3.2.2 Temperatura de referencia del edificio (building reference temperature)

Esta es una temperatura entre 40°F y 230°F (4.4°C a 110°C). Una vez seleccionada, es la temperatura que tiene de referencia el sistema para comenzar a aumentar su propia temperatura. Por ejemplo, si se usa un ajuste de acción integral de 1.6 y seleccionamos una temperatura de referencia del edificio de 70°F (21.1°C), a una temperatura exterior de 69°F (20.6°C), cuando la temperatura exterior sea de 71.6°F (0.9°C a 22°C), la temperatura del cabezal de suministro incrementará 1.6°.

3.2.3 Instalación de sensor de temperatura de aire exterior

El sensor de temperatura de aire exterior debe colocarse en el lado norte del edificio, donde se espere una temperatura de aire exterior promedio. El sensor debe protegerse contra los rayos directos del sol, así como de los efectos de las inclemencias del tiempo. Si se usa una cubierta o cable blindado, este debe permitir la libre circulación del aire. El sensor puede colocarse hasta 200 pies (61m) de distancia de la unidad. Las conexiones del sensor se hacen en la Caja de entrada/salida (I/O) en la parte de enfrente de la caldera. Las conexiones se hacen en las terminales etiquetadas OUTDOOR AIR IN (entrada de aire exterior) y AIR SENSOR COM (comunicación de sensor de aire) dentro de la Caja I/O. Use cable blindado de 18 a 22 AWG para las conexiones. Se proporciona un diagrama de cableado en la cubierta de la Caja I/O. Consulte la Sección 2.10: Cableado de corriente eléctrica AC de la Guía de instalación y arranque de Benchmark 750 – 3000OMM-0131 (GF-205-LA), para más información sobre el cableado.
3.2.4 Arranque interior/exterior

El arranque en el modo INDOOR/OUTDOOR RESET (reset interior/exterior) se realiza de la siguiente manera:

NOTA:
Un ingeniero de diseño usualmente proporciona la temperatura de aire exterior del diseño y datos sobre la temperatura del cabezal del suministro.

Instrucciones de configuración interior/exterior

1. Consulte las tablas sobre el ajuste de acción integral interior/exterior en el Apéndice E.
2. Escoja la tabla que corresponda a la Temperatura de Referencia del Edificio que desea.
3. Hacia la parte inferior de la columna de la izquierda de la tabla encontrará la temperatura de aire exterior del diseño más fría que se espera en su área.
4. Una vez que haya escogido la temperatura de aire exterior del diseño, vaya al otro lado de la tabla a la temperatura del cabezal del suministro que desea para la temperatura del diseño que escogió en el paso 3.
5. Después, observe en la parte superior de la columna, en la fila de AJUSTE DE ACCIÓN INTEGRAL, y encuentre el ajuste de acción integral que corresponda.
6. Acceda al menú Configuración (configuración) y navegue en él hasta que la pantalla muestre BLDG REF TEMP (temperatura de referencia del edificio). Si es necesario, consulte la Sección 2.3: Menús del controlador C-More, que se menciona antes, para consultar instrucciones detalladas sobre la navegación en los menús.
8. Use las teclas flecha ▲ y ▼ para seleccionar la Temperatura de Referencia del Edificio que desee.
9. Presione ENTER para guardar los cambios.
10. Después, navegue por el menú Configuration (configuración) hasta que en la pantalla aparezca RESET RATIO (ajuste de acción integral).
12. Use las teclas flecha ▲ y ▼ para seleccionar Reset Ratio (ajuste de acción integral) como se especifica en el paso 5.
13. Presione ENTER para guardar los cambios.

3.3 MODO CONSTANT SETPOINT (TEMPERATURA FIJADA CONSTANTE)

El modo CONSTANT SETPOINT (temperatura fijada constante) se usa cuando se desea una temperatura fijada de cabezal. Los usos comunes de este modo de operación incluyen circuitos de bomba de calor que operan con agua e intercambiadores de calor indirectos para sistemas o procesos de agua potable caliente.

No se requiere ningún sensor externo para operar en este modo. Si bien es necesario establecer la temperatura fijada deseada, no es necesario cambiar ninguna otra función relacionada con la temperatura. Los valores de la unidad se establecen desde fábrica en configuraciones que funcionan bien en la mayoría de las aplicaciones. Antes de cambiar alguno de los parámetros relacionados con la temperatura, además de la temperatura fijada, se sugiere ponerse en contacto con algún representante de AERCO. Vea el Apéndice A para consultar las descripciones de las funciones relacionadas con la temperatura, y las Secciones 2.4–2.10 para consultar su rango de opciones, así como los valores predeterminados desde fábrica.
SECCIÓN 3 – MODOS DE OPERACIÓN

3.3.1 Ajuste de la temperatura fija

La temperatura fijada que se establece en la unidad se puede ajustar entre 40°F y 240°F (4.4°C y 115.6°C). Si desea configurar la unidad para operar en el modo CONSTANT SETPOINT (temperatura fijada constante), debe configurar las opciones del menú Internal Setpt (temperatura fijada interna) y Boiler Mode (modo de caldera), en el menú Configuration (configuración) de la siguiente manera:

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>CONFIGURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Setpt (temperatura fijada interna)</td>
<td>Seleccione la temperatura fijada usando las teclas flecha ▲ y ▼ (40°F a 240°F, 4.4°C a 115.6°C)</td>
</tr>
<tr>
<td>Boiler Mode (modo caldera)</td>
<td>Constant Setpoint (temperatura fijada constante)</td>
</tr>
</tbody>
</table>

Vea la Sección 2.3: Menús del controlador C-More, para consultar instrucciones detalladas sobre las opciones del menú que se cambian.

3.4 MODO REMOTE SETPOINT (AJUSTE REMOTO DE TEMPERATURA FIJADA)

La temperatura fijada de la unidad se puede controlar de manera remota mediante un Sistema de Administración de Energía (EMS) o un Sistema de Automatización del Edificio (BAS). El ajuste remoto de temperatura fijada puede activarse con una corriente o señal de voltaje dentro de los siguientes rangos:

- 4-20 mA/1-5 VDC
- 0-20 mA/0-5 VDC

La configuración establecida desde fábrica para el modo de temperatura fijada es 4-20 mA/1-5 VDC. Con esta configuración, se usa una señal de 4-20 mA/1-5 VDC, enviada por un EMS o BAS, para cambiar la temperatura fijada de la unidad. La señal de 4 mA/1V es igual a una temperatura fijada de 40°F (4.4°C), mientras que una señal de 20 mA/5V es igual a una temperatura fijada de 240°F (115.6°C). Cuando se usa una señal de 0-20 mA/0-5 VDC, 0 mA es igual a una temperatura fijada de 40°F (4.4°C).

Además de la corriente y las señales de voltaje descritas antes, el modo REMOTE SETPOINT (ajuste remoto de temperatura fijada) también puede activarse con una señal RS-485 de red del Modbus de un EMS o BAS.

Los modos de operación de REMOTE SETPOINT (ajuste remoto de temperatura fijada) pueden usarse para activar una o varias unidades.

NOTA:
Si se usa un voltaje en lugar de señal de corriente para controlar el ajuste remoto de temperatura fijada, se debe realizar un ajuste al interruptor DIP en la tarjeta PMC localizada dentro del controlador C-More. Póngase en contacto con su representante local de AERCO para conocer más detalles.

Para habilitar el modo REMOTE SETPOINT (ajuste remoto de temperatura fijada), debe configurur las opciones del menú Boiler Mode (modo de caldera) y Remote Signal (señal remota) en el menú Configuration (configuración) de la siguiente manera:

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>CONFIGURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Mode (modo caldera)</td>
<td>Remote Setpoint (ajuste remoto de temperatura fijada)</td>
</tr>
<tr>
<td>Remote Signal (señal remota)</td>
<td>4-20mA/1-5V, 0-20mA/0-5V o Network (red)</td>
</tr>
</tbody>
</table>

Consulte la Sección 2.3: Menús del controlador C-More, para ver instrucciones detalladas sobre las opciones del menú que se cambian.
Si en la configuración de Network (red) se selecciona la operación en Modbus RS-485, se debe ingresar una dirección de comunicación válida (Comm Address) en el menú Setup. Consulte el Manual de comunicación de Modbus GF-114 para más información.

Aunque es posible cambiar la configuración de las funciones relacionadas con la temperatura, la unidad viene con los valores establecidos desde fábrica con configuraciones que funcionan bien en la mayoría de las aplicaciones. Se sugiere ponerse en contacto con un representante de AERCO, antes de cambiar cualquier configuración de funciones relacionadas con la temperatura. Vea el Apéndice A para consultar las descripciones de las funciones relacionadas con la temperatura, y las Secciones 2.4–2.10 para consultar su rango de opciones, así como los valores predeterminados desde fábrica.

3.4.1 Cableado de campo para el ajuste remoto de temperatura fijada

Las únicas conexiones de cableado necesarias para el modo REMOTE SETPOINT (ajuste remoto de temperatura fijada) son las conexiones de la señal remota que van de la fuente a la Caja I/O de la unidad. La Caja I/O se localiza en el panel frontal de la caldera. En el caso de configuraciones de 4-20mA/0-5V o 0-20mA/0-5V, las conexiones se hacen en las terminales de ENTRADA ANALÓGICA en la caja I/O. En el caso de la configuración Network (red), las conexiones se hacen en las terminales de COMUNICACIÓN DE RS-485 en la caja I/O. La señal debe estar flotando (sin conexión a tierra) en la Caja I/O, y el cable usado debe ser un par blindado de dos hilos de entre 18 y 22 AWG. Siga la polaridad correcta. El extremo de la fuente del cable blindado debe conectarse a la fuente. Cuando se activan varias unidades, el cableado de cada unidad debe cumplir con lo anterior.

3.4.2 Arranque de ajuste remoto de temperatura fijada

Dado que este modo de operación viene predeterminado de fábrica y la temperatura fijada se está controlando de manera externa, no se necesitan instrucciones de arranque. En este modo, el LED REMOTE (remoto) se encenderá cuando esté presente la señal externa.

Para operar la unidad en modo MANUAL, presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se apagará y se encenderá el LED MANUAL.

Para volver al modo REMOTE SETPOINT (ajuste remoto de temperatura fijada), simplemente presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se encenderá de nuevo, y se apagará el LED MANUAL.

3.5 MODO DIRECT DRIVE (ACCIONAMIENTO DIRECTO)

La posición de la válvula de aire-combustible de la unidad (% apertura) puede cambiarse mediante una señal remota, la cual usualmente se envía desde un Sistema de Administración de Energía (EMS) o desde un Sistema de Automatización del Edificio (BAS). El modo Direct Drive (accionamiento directo) puede activarse con una corriente o señal de voltaje dentro de los siguientes rangos:

- 4-20 mA/1-5 VDC
- 0-20 mA/0-5 VDC

La configuración establecida desde fábrica para el modo DIRECT DRIVE (accionamiento directo) es 4-20 mA/1-5 VDC. Con esta configuración, se usa una señal de 4-20 mA, enviada por un EMS o BAS, para cambiar la posición de válvula de la unidad de 0% a 100%. Una señal de 4 mA/1V es igual a una posición de válvula en 0%, mientras que una señal de 20 mA/5V es igual a una posición de válvula de 100%. Cuando se usa una señal de 0-20 mA/0 a 5 VDC, cero es igual a una posición de válvula de 0%.

Además de la corriente y las señales de voltaje descritas antes, el modo DIRECT DRIVE (accionamiento directo) también puede activarse con una señal RS-485 de red del Modbus de un EMS o BAS.

Cuando está en modo DIRECT DRIVE (accionamiento directo), la unidad depende del EMS o BAS así que no controla la temperatura. DIRECT DRIVE (accionamiento directo) puede usarse para activar una sola o varias unidades.

NOTA:

Si se usa un voltaje en lugar de señal de corriente para controlar el ajuste remoto de temperatura fijada, se debe realizar un ajuste en el interruptor DIP en la tarjeta del CPU localizada dentro del controlador C-More. Póngase en contacto con su representante local de AERCO para conocer más detalles.

Para habilitar el modo DIRECT DRIVE (accionamiento directo), debe configurar las opciones del menú Boiler Mode (modo caldera) y Remote Signal (señal remota) en el menú Configuration (configuración) de la siguiente manera:
SECCIÓN 3 – MODOS DE OPERACIÓN

TABLA 3-3: Configuraciones del Modo Direct Drive (accionamiento directo)

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>CONFIGURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Mode (modo caldera)</td>
<td>Direct Drive (accionamiento directo)</td>
</tr>
<tr>
<td>Remote Signal (señal remota)</td>
<td>4-20mA/1-5V, 0-20mA/0-5V o Network (red)</td>
</tr>
</tbody>
</table>

Consulte la Sección 2.3: Menús del controlador C-More, para ver instrucciones detalladas sobre las opciones del menú que cambian.

Si en la configuración de Network (red) se selecciona la operación en Modbus RS-485, se debe ingresar una dirección de comunicación válida (Comm Address) en el menú Setup. Consulte el Manual de comunicación de Modbus GF-114 para más información.

3.5.1 Cableado de campo para el accionamiento directo

Las únicas conexiones de cableado necesarias para el modo DIRECT DRIVE (accionamiento directo) son las conexiones de la señal remota que van de la fuente a la Caja I/O de la unidad. En el caso de configuraciones de 4-20mA/0-5V o 0-20mA/0-5V, las conexiones se hacen en las terminales de ENTRADA ANALÓGICA en la caja I/O. En el caso de la configuración Network (red), las conexiones se hacen en las terminales de COMUNICACIÓN DE RS-485 en la caja I/O. La señal debe estar flotando (sin conexión a tierra) en la Caja I/O, y el cable usado debe ser un par blindado de dos hilos de entre 18 y 22 AWG. Siga la polaridad correcta. El extremo de la fuente del cable blindado debe conectarse a la fuente. Cuando se activan varias unidades, el cableado de cada unidad debe cumplir con lo anterior.

3.5.2 Arranque de accionamiento directo

Dado que este modo de operación viene predeterminado de fábrica y la posición de válvula se está controlando de manera externa, no se necesitan instrucciones de arranque. En este modo, el LED REMOTE (remoto) se encenderá cuando esté presente la señal.

Para operar la unidad en modo MANUAL, presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se apagará y se encenderá el LED MANUAL.

Para volver al modo Direct Drive (accionamiento directo), simplemente presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se encenderá de nuevo, y se apagará el LED MANUAL.
SECCIÓN 3 – MODOS DE OPERACIÓN

3.6 SISTEMA DE CONTROL DE AERCO (AERCO CONTROL SYSTEM, ACS)

NOTA:
ACS es para instalaciones con 9 o más calderas. Utiliza únicamente señalización RS-485 a la caldera. Las instalaciones con 1 a 8 calderas pueden usar la Tecnología de Encendido Secuencial de Calderas (Boiler Sequencing Technology, BST), como se describe en la Sección 6 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).

El modo de operación ACS se usa con el Sistema de Control AERCO. El modo ACS se usa cuando se desea operar varias unidades de la manera más eficiente posible. En este modo de operación, el sensor de cabezal ACS debe instalarse entre 2 y 10 pies (0.61 y 3m) después de la ULTIMA caldera en el cabezal de suministro de agua del sistema de calderas. ACS puede controlar hasta 40 calderas, hasta 32 a través de la comunicación de la red Modbus (RS-485). Para consultar detalles de la programación de ACS, así como de la operación e instalación del sensor del cabezal, vea la Guía de operaciones de ACS, GF-131. Para operaciones mediante la red de Modbus RS-485, consulte el Manual de comunicación de Modbus GF-114 Para habilitar el modo ACS, debe configurar las opciones del menú Boiler Mode (modo de caldera) y Remote Signal (señal remota) en el menú Configuration (configuración) de la siguiente manera:

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>CONFIGURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Mode</td>
<td>Direct Drive (accionamiento directo)</td>
</tr>
<tr>
<td>Remote Signal</td>
<td>Network (red) (RS485)</td>
</tr>
</tbody>
</table>

Consulte la Sección 2.3 Menús del controlador C-More, para ver instrucciones detalladas sobre las opciones del menú que cambian.

3.6.1 Cableado externo de campo para ACS

Las conexiones del cableado para el control de Modbus RS-485 se hacen entre las terminales 485 A- y 485 B+ en ACS (de la caldera 9 a la 40) y las terminales de comunicación RS-485 en la Caja I/O en la parte de enfrente de la caldera.

Conecte las unidades usando un cable bifilar blindado trenzado de entre 18 y 22 AWG. Siga la polaridad correcta para las conexiones del cableado de comunicación RS-485 de ACS. Los cables blindados deben estar conectados en sus extremos únicamente al ACS, y el extremo de la caldera debe quedar flotante. El cableado de cada unidad debe cumplir con lo anterior.

3.6.2 Configuración y arranque de ACS

Este modo de operación es predeterminado desde fábrica y ACS controla el nivel de flama (posición de % de apertura de la válvula de aire-combustible). No hay instrucciones de arranque individual para cada unidad.

Para operar la unidad en modo MANUAL, presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se apagará y se encenderá el LED MANUAL.

Para volver al modo ACS simplemente presione el interruptor AUTO/MAN (automático/manual). El LED REMOTE (remoto) se encenderá de nuevo, y se apagará el LED MANUAL.
3.7 SISTEMA DE CONTROL COMBINADO (COMBINATION CONTROL SYSTEM, CCS)

NOTA:
Solo ACS puede usarse en el Sistema de Control Combinado.

Un Sistema de Control Combinado (Combination Control System, CCS) es el que usa varias calderas para cubrir las necesidades tanto de calefacción del espacio como de agua caliente sanitaria. El supuesto detrás de este sistema es que la demanda máxima de calefacción del espacio y la demanda máxima de calentamiento de agua sanitaria no ocurren de manera simultánea. Por lo tanto, las calderas que se usan para calentar agua sanitaria son capaces de cambiar de temperatura fija constante a control mediante ACS.

En un CCS típico, se instala un número adecuado de calderas para cubrir la demanda de calefacción del espacio que se espera al día. Sin embargo, una o más unidades se usan también para la demanda de agua caliente sanitaria. Estas calderas son las unidades combinadas y se les llama calderas combo. Las calderas combo calientan el agua a una temperatura fija constante. El agua es después puesta en circulación mediante un intercambiador de calor en un tanque de almacenamiento de agua caliente sanitaria.

Solo se necesita el Sistema de Control de AERCO (AERCO Control System, ACS) para configurar este sistema cuando se usa una sola válvula para cambiar de calefacción del espacio a calentamiento de agua sanitaria. No obstante, se necesita el Panel del Relevador de ACS en combinación con ACS cuando hay hasta dos válvulas de aislamiento, interconexiones de calderas y / o una bomba de Agua Caliente Sanitaria en un sistema de calentamiento en Combinación donde se usen las calderas AERCO tanto para la calefacción del edificio como para el Calentamiento de Agua Sanitaria.

Las siguientes dos opciones están disponibles para usar un sistema combinado; uno que usa únicamente ACS y otro que requiere una Caja Opcional de Relevadores ACS:

- **OPCIÓN 1:** Esta opción se selecciona cuando el ACS controla un sistema de calderas con hasta ocho calderas combinadas que son calderas que tienen como Prioridad el Calentamiento de Agua Sanitaria, junto con calderas de calefacción del edificio, y una válvula de aislamiento en el cabezal principal entre las calderas de calefacción del edificio y las calderas cuya prioridad es el agua caliente sanitaria.

- **OPCIÓN 2:** Cuando se selecciona esta opción, el Panel de Relevadores de ACS debe usarse en conjunto con ACS. En esta opción, ACS controla un sistema de calderas de hasta 8 calderas combinadas que se dividen en las que tienen como prioridad la calefacción del edificio y las que tienen como prioridad el calentamiento de agua sanitaria, junto con calderas de calefacción del edificio, usan dos válvulas de aislamiento hidrónico en el cabezal principal, una entre las calderas de calefacción del edificio y las calderas cuya prioridad es la calefacción del edificio, y la otra entre las caderas de la calefacción del edificio y las calderas cuya prioridad es el calentamiento de agua sanitaria.

En la Opción 2, cuando la demanda de calefacción de espacio es tal que cuando todas las calderas de calefacción están en la posición de válvula en 100%, ACS pedirá a la Caja del Relevador de ACS que las calderas de calentamiento de agua sanitaria se vuelvan calderas de calefacción del espacio. Siempre que la demanda de agua caliente sanitaria esté satisfecha, las calderas combo (agua caliente) se convertirán en calderas de calefacción del espacio. Si la demanda de agua caliente sanitaria no está satisfecha, las calderas combo seguirán activadas para la demanda de agua caliente sanitaria. Si el interruptor de las calderas combo cambió a calefacción del espacio, pero no se presenta una solicitud de agua caliente sanitaria, la Caja de Relevador de ACS vuelve a colocar las unidades combo para que atiendan la demanda de agua sanitaria. El sistema ACS combinado con la Caja del Relevador de ACS pedirá ayuda a las calderas cuya prioridad es la calefacción del edificio con el calentamiento de agua sanitaria si las calderas cuya prioridad es el calentamiento de agua sanitaria no logran satisfacer la demanda de agua caliente sanitaria.

Cuando las unidades combo satisfacen la demanda de agua sanitaria, están en modo de operación CONSTANT SETPOINT (temperatura fija constante). Cuando las unidades combo cambian a calefacción del espacio, su modo de operación cambia para atender la orden de ACS. Para más información con relación a la operación de ACS, consulte la Guía de operaciones de ACS, GF-131. Para más información sobre la Caja del Relevador de ACS, vea la sección 2.14 en ese mismo manual.

3.7.1 Cableado de campo del Sistema de Control Combinado

El cableado para este sistema se hace entre ACS, la Caja de Relevador de ACS y las terminales en la Caja I/O. Conecte las unidades usando un cable bifilar blindado trenzado de 18 a 22 AWG. Cuando se conectan varias unidades, el cableado de cada una debe cumplir con lo anterior.
3.7.2 Configuración y arranque del Sistema de Control Combinado

Configurar el modo COMBINATION (combinación) requiere que se ingresen algunos datos en el menú *Configuration* (configuración) en las opciones boiler mode (modo de caldera), remote signal type (tipo de señal remota) y setpoint (temperatura fijada); para más detalles vea la Sección 2.6: *Menú configuración*. La temperatura fijada que se establece en la unidad se puede ajustar entre 40°F y 190°F (4.4°C y 87.8°C).

Para habilitar el modo COMBINATION (combinación), debe configurar las opciones del menú *Boiler Mode* (modo de caldera) *Remote Signal* (señal remota) e *Internal Setpt* (temperatura fijada interna) en el menú *Configuration* (configuración) de la siguiente manera:

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>CONFIGURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Mode (modo caldera)</td>
<td>Combination (combinación)</td>
</tr>
<tr>
<td>Remote Signal (señal remota)</td>
<td>Network (red)</td>
</tr>
<tr>
<td>Internal Setpt (temperatura fijada interna)</td>
<td>40°F a 190°F (4.4°C a 87.8°C)</td>
</tr>
</tbody>
</table>

Consulte la Sección 2.3: *Menús del controlador C-More*, para ver instrucciones detalladas sobre las opciones del menú que cambian.

Aunque es posible cambiar otras funciones relacionadas con la temperatura en el modo COMBINATION (combinación), dichas funciones vienen preestablecidas con valores predeterminados de fábrica. Esta configuración predeterminada funciona bien en la mayoría de las aplicaciones. Se le sugiere que se ponga en contacto con AERCO antes de cambiar alguna configuración en la unidad, además del ajuste de temperatura fijada. Para consultar la lista completa de los parámetros de las funciones relacionadas con la temperatura, vea las Secciones 2.4–2.10.

Para operar la unidad en modo MANUAL, presione el interruptor *AUTO/MAN* (automático/manual). El LED MANUAL se encenderá.

Para configurar la unidad en modo AUTO de nuevo, presione el interruptor *AUTO/MAN* (automático/manual). El LED MANUAL se apagará y se encenderá el LED REMOTE (remoto).

Cuando la caldera cambia a control ACS, el sistema ACS controla la posición de válvula. No hay requisitos de configuración para las calderas en este modo.
SECCIÓN 4: MANTENIMIENTO

4.1 CALENDARIO DE MANTENIMIENTO

Todas las calderas Benchmark requieren de mantenimiento periódico regular para conservar su eficacia y confiabilidad. Si se desea obtener la mejor operación y vida útil de la unidad, se deberán realizar los siguientes procedimientos de mantenimiento de manera rutinaria en los periodos que se especifican en la Tabla 4-1. Para realizar una lista de verificación de inspección completa, consulta la tabla ASME CSD-1.

El siguiente kit de mantenimiento está disponible a través de su representante de ventas local de AERCO.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>N/P del Kit</th>
<th>Tipo</th>
<th>Componentes que reciben servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>750-3000</td>
<td>58025-01</td>
<td>12 meses</td>
<td>Dispositivo de encendido, varilla de flama y trampa de condensado</td>
</tr>
<tr>
<td>750-1000</td>
<td>58025-08, 58025-17</td>
<td>24 meses circuito de agua / chimenea</td>
<td>58025-01 más: quemador, mecanismo de interrupción por nivel de agua bajo, remplazo de filtro de aire</td>
</tr>
<tr>
<td>1500-2000</td>
<td>58025-13, 58025-19</td>
<td>24 meses circuito de agua / chimenea</td>
<td>Igual que 58025-08, salvo filtro de aire limpio</td>
</tr>
<tr>
<td>2500-3000</td>
<td>58025-10, 58025-18</td>
<td>24 meses circuito de agua / chimenea</td>
<td>Igual que 58025-13, salvo filtro de aire limpio</td>
</tr>
</tbody>
</table>

¡CUIDADO!

Antes de poner en servicio, asegúrese que se siguen de manera estricta los siguientes lineamientos:
- DESCONECTE EL SUMINISTRO DE CORRIENTE AC, APAGANDO EL INTERRUPTOR DE SERVICIO Y EL INTERRUPTOR DEL CIRCUITO DE SUMINISTRO AC.
- Cierre el suministro de gas mediante la válvula de cierre manual que se proporciona con la unidad.
- Permita que la unidad se enfríe a una temperatura de agua segura para evitar quemaduras y escaldaduras.

TABLA 4-1: Calendario de Mantenimiento

<table>
<thead>
<tr>
<th>SEC</th>
<th>COMPONENTE</th>
<th>6 MESES</th>
<th>12 MESES</th>
<th>24 MESES</th>
<th>TIEMPO DE TRABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Kit de dispositivo de encendido-inyector (N/P 58023)</td>
<td>*Inspeccionar</td>
<td>Inspeccionar, remplazar si es necesario</td>
<td>Remplazar</td>
<td>15 Min</td>
</tr>
<tr>
<td>4.3</td>
<td>Kit de detector de flama (N/P 24356-1)</td>
<td>*Inspeccionar</td>
<td>Inspeccionar, remplazar si es necesario</td>
<td>Remplazar</td>
<td>15 Min</td>
</tr>
<tr>
<td>4.4</td>
<td>Sensor de O2 bajo (N/P 61026)</td>
<td>*Inspeccionar</td>
<td>Inspeccionar</td>
<td></td>
<td>15 Min</td>
</tr>
<tr>
<td>**</td>
<td>Calibración de combustión</td>
<td>*Revisar</td>
<td>Revisar</td>
<td></td>
<td>1 hr.</td>
</tr>
<tr>
<td>4.5</td>
<td>Pruebas a dispositivos de seguridad</td>
<td>Ver tabla ASME CSD-1</td>
<td></td>
<td></td>
<td>45 Min</td>
</tr>
<tr>
<td>4.6</td>
<td>Quemador</td>
<td>Inspeccionar</td>
<td></td>
<td></td>
<td>2 hrs.</td>
</tr>
<tr>
<td>4.7</td>
<td>Trampa de drenado de condensado</td>
<td>*Inspeccionar</td>
<td>Inspeccionar, limpiar y remplazar empaques</td>
<td>Inspeccionar, limpiar y remplazar empaques</td>
<td>30 Min</td>
</tr>
<tr>
<td>4.8</td>
<td>Filtro de aire</td>
<td>Limpiar</td>
<td></td>
<td>Remplazar</td>
<td>15 Min</td>
</tr>
</tbody>
</table>

*Solo se realiza después del periodo inicial de 6 meses posterior al arranque inicial.
**Las instrucciones de calibración de combustión están en la Sección 4.4 de OMM-0131 (GF-205-LA).
4.2 DISPOSITIVO DE ENCENDIDO - INYECTOR

El dispositivo de encendido-inyector (N/P 58023) se localiza en el plato del quemador en la parte superior de la caldera. Además de proporcionar la chispa de encendido que se requiere para encender el quemador, el dispositivo de encendido-inyector también tiene el tubo del inyector de gas, el cual conecta con el ensamblado de encendido gradual. De la Figura 4-1a a la Figura 4-1c se muestra el ensamblado completo del quemador retirado de la caldera y se señala la ubicación del detector de flama del dispositivo de encendido-inyector y demás componentes relacionados.

Figura 4-1a: Ensamblado del quemador de BMK 750/1000 (retirado de la caldera)
SECCIÓN 4 – MANTENIMIENTO

Figura 4-1b: Ensamblado del quemador de BMK 1500/2000 (retirado de la caldera)

Figura 4-1c: Ensamblado del quemador de BMK 2500/3000 (retirado de la caldera)
El dispositivo de encendido-inyector puede estar caliente, así que se debe tener cuidado para evitar quemaduras. Es más fácil retirar el dispositivo de encendido-inyector de la unidad después de que se ha dejado enfriar la unidad y está a temperatura ambiente. Inspeccionar/remplazar el dispositivo de encendido:

Instrucciones de procedimientos para mantenimiento de dispositivo de encendido-inyector

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado. Desconecte la alimentación AC de la unidad.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Desconecte el cable del dispositivo de encendido-inyector (ver de la Figura 4-1a a la 4-1c, que parecen antes).
4. Consulte la Figura 4-2a a la 4-2c que se muestran más adelante, use una llave inglesa de extremo abierto de 7/16” para desconectar la tuerca de compresión que fija el tubo del inyector de gas del dispositivo de encendido-inyector al codo del ensamblado de encendido gradual. Desconecte el ensamblado de encendido gradual del dispositivo de encendido - inyector.

Figura 4-2a: Información de montaje de dispositivo de encendido-inyector y detector de flama de BMK 750/1000

Figura 4-2b: Información de montaje dispositivo de encendido-inyector y detector de flama de BMK 1500/2000
Instrucciones de procedimientos para mantenimiento de dispositivo de encendido-inyector

5. Ahora, afloje y retire el dispositivo de encendido-inyector del plato del quemador usando una llave inglesa de extremo abierto de 1".

6. Revise el inyector de la flama para buscar evidencia de erosión o acumulación de carbón. Si hay evidencia significativa de erosión o acumulación de carbón, el dispositivo de encendido-inyector debe reemplazarse. Si hay acumulación de carbón presente, limpie el componente usando una tela esmeril fina. La acumulación repetida de carbón es indicación de que las configuraciones de combustión de la unidad deben verificarse. Para revisar los procedimientos de calibración de combustión consulte la Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).

7. Antes de reinstalar el dispositivo de encendido-inyector aplique un compuesto conductor para temperatura alta a los filamentos.

8. Reinstale el dispositivo de encendido-inyector en el plato del quemador usando en 1 a 3 arandelas de indexación, según se necesite, para que cuando el dispositivo de encendido-inyector se ajuste, el tubo del inyector se posicione dentro del arco de aproximadamente 120°, como se muestra de las Figuras 4-3a a la 4-3c que aparecen a continuación. Observe que la colocación recomendada del tubo del inyector es distinta de la posición que se recomendó en el pasado.

NOTA:
Si un dispositivo de encendido-inyector de repuesto (Kit N/P 58023) se está instalando, se incluye en el kit una tuerca de comprensión con casquillo integrado y 3 arandelas de indexación.
Instrucciones de procedimientos para mantenimiento de dispositivo de encendido-inyector

10. Conecte el ensamblado de encendido gradual al tubo del inyector de gas del dispositivo de encendido-inyector y ajuste la tuerca de compresión en el codo del ensamblado de encendido gradual.

11. Reconecte el cable del dispositivo de encendido-inyector.

12. Reinstale la cubierta de la unidad.
SECCIÓN 4 – MANTENIMIENTO

Instrucciones de procedimientos para mantenimiento de dispositivo de encendido-inyector

Figura 4-3c. Orientación del dispositivo de encendido-inyector de BMK 2500/3000

4.3 DETECTOR DE FLAMA

El detector de flama (kit N/P 24356-1) se localiza en el plato del quemador en la parte superior de la unidad (ver de la Figura 4-1a a la 4-1c y de la 4-2a a la 4-2c, que se muestran antes). El detector de la flama puede estar caliente. Permita que la unidad se enfríe lo suficiente antes de quitar el detector de flama. Inspeccione o reemplace el detector de flama de la siguiente manera:

Instrucciones para el mantenimiento del detector de flama

1. Ponga el interruptor ON/OFF (encendido/apagado) del Controlador C-More en la posición OFF de apagado. Desconecte la alimentación AC de la unidad.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Desconecte el cable conductor del detector de flama.
4. Retire los dos (2) tornillos que fijan el detector de flama al plato (Figuras 4-2a – 4-2c).
5. Retire el detector de flama y el empaque del plato del quemador.
6. Inspeccione con cuidado el detector de la flama. Si presenta erosión, se debe remplazar. Si no hay erosión, limpie el detector con una tela de esmeril fina.
7. Reinstale el detector de flama y el empaque del detector de flama.
8. Reconecte el cable conductor del detector de flama.
9. Reinstale la cubierta en la unidad.

4.4 SENSOR DE O$_2$

El sensor de oxígeno bajo (kit N/P 61026-1) se localiza en el plato del quemador en la parte superior de la unidad (ver de la Figura 4-1a a la 4-1c y de la 4-2a a la 4-2c). El sensor puede estar caliente. Permita que la unidad se enfríe lo suficiente antes de quitar el sensor de O$_2$.

Instrucciones de mantenimiento del sensor de O$_2$

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado. Desconecte la alimentación AC de la unidad.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Desconecte el cable conductor del sensor de O$_2$ apretando hacia dentro la pestaña liberadora y separando el conector.
4. Después, afloje y retire el sensor de O$_2$ y la arandela de aplastamiento del plato del quemador usando una llave inglesa de extremo abierto de 15/16”.
5. Inspeccione cuidadosamente el sensor de O$_2$. Si presenta erosión, se debe remplazar. Si no hay erosión, limpie el sensor con una tela esmeril fina.
6. Reinstale el sensor de O$_2$ y la arandela de aplastamiento en el plato del quemador.
7. Reconecte el cable conductor del sensor de oxígeno.
Instrucciones de mantenimiento del sensor de O₂

8. Reinstale la cubierta en la unidad.

4.5 PRUEBA A DISPOSITIVOS DE SEGURIDAD

Se deben realizar pruebas sistemáticas a conciencia a los dispositivos de operación y de seguridad para confirmar que operan como fueron diseñados. Ciertas normativas, como ASME CSD-1, exigen que estas pruebas se realicen de manera regular. Los calendarios de pruebas deben seguir las leyes locales. Los resultados de las pruebas se deben registrar en una bitácora.

Vea la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA) para consultar la descripción e instrucciones de aplicación de estas pruebas.

4.6 INSPECCIÓN DEL QUEMADOR

El ensamblado del quemador está localizado en la parte superior del intercambiador de calor de la unidad. El ensamblado del quemador puede estar caliente. Por lo tanto, permita que la unidad se enfrie lo suficiente antes de quitar el ensamblado del quemador.

4.6.1 INSPECCIÓN DEL QUEMADOR DE BMK 750/1000

Se requieren las siguientes piezas para el reensamblado después de la inspección del quemador:

<table>
<thead>
<tr>
<th>Piezas de inspección del quemador de BMK 750/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de pieza</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>81143</td>
</tr>
<tr>
<td>81048</td>
</tr>
<tr>
<td>81064</td>
</tr>
</tbody>
</table>

Instrucciones para la inspección del quemador de BMK 750/1000

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado. Desconecte la corriente AC de la unidad y cierre el suministro de gas.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Desconecte el cable conductor del detector de flama instalado en el plato quemador. Vea la Figura 4-4b.
4. Retire los dos (2) tornillos que fijan el detector de flama al plato. El detector de flama está fijo al plato del quemador con un (1) tornillo #10-32 y un (1) tornillo #8-32.
5. Retire el detector de flama y el empaque del plato del quemador.
6. Desconecte el cable del dispositivo de encendido-inyector.
7. Usando una llave inglesa de extremo abierto de 7/16”, desconecte la tuerca de compresión que fija el tubo del inyector de gas al codo del ensamblado de encendido gradual (ver 4-1a), después desconecte el ensamblado de encendido gradual del dispositivo de encendido-inyector.
Instrucciones para la inspección del quemador de BMK 750/1000

Figura 4-4a: Información del montaje de ensamblado del quemador de BMK 750/1000
(vista desde arriba)

Figura 4-4b: Ensamblado del quemador de BMK 750/1000 (vista detallada)

8. Ahora, afloje y retire el dispositivo de encendido-inyector del plato del quemador usando una llave inglesa de extremo abierto de 1”.

9. Desconecte los conectores del arnés de cableado de la unidad de la válvula de aire-combustible y del motor del ventilador.

10. Desconecte el cable conductor conectado al interruptor Blower Proof (comprobación del ventilador) y el...
Instrucciones para la inspección del quemador de BMK 750/1000

11. Desconecte el tren de gas de la válvula de aire-combustible removiendo los cuatro (4) pernos y tuercas de 1/2” (Figura 4-4a).
12. Desconecte la manguera flexible de la válvula de aire-combustible aflojando la abrazadera para manguera.
13. Retire los cuatro tornillos de cabeza hexagonal de 5/16-18 que fijan el ventilador al plato del quemador (Figura 4-4b).
14. Retire el ventilador y la válvula de aire-combustible del plato del quemador tirando hacia arriba. Retire también el empaque del ventilador.
15. Retire las ocho (8) tuercas de 3/8-16 de la brida del quemador (Figura 4-4a) usando una llave de 9/16”.

NOTA:
El ensamblado del quemador pesa aproximadamente 25 libras (11.3 kg).

16. Retire el ensamblado del quemador de la brida del quemador tirando hacia arriba.
17. Retire y remplace el empaque del quemador.

NOTA:
Durante el ensamblado aplique una capa ligera de lubricante antiadherente de alta temperatura a los filamentos del dispositivo de encendido-inyector y conecte a tierra el tornillo. Además, asegúrese de que el dispositivo de encendido-inyector está colocado apropiadamente como se indica en la Figura 4-3a. Apriete el dispositivo de encendido-inyector con una fuerza de torsión de 14 - 15 pies-lbs. (19.0-20.3 Nm).

18. Comenzando con el ensamblado del quemador que retiro en el paso 16, reinstale todos los componentes en orden inverso en que los retiró. Cuando reinstale la brida del quemador (que retiró en el paso 15), apriete las tuercas de 3/8-16 usando un patrón de par de torsión típico. Por ejemplo, apriete ligeramente una tuerca, después apriete ligeramente la segunda tuerca del lado opuesto, una tercera a 90 grados de las primeras dos, y la cuarta en el lado opuesto de la tercera, y después repita este patrón con las tuercas restantes. Repita el patrón completo una segunda vez para apretar parcialmente las ocho tuercas, y después repita una tercera vez hasta que las ocho tuercas alcancen completamente una torsión de 30 pies libras. (40.7 Nm).
19. Asegúrese de que los fusibles del dispositivo de encendido-inyector y el detector de flama están alineados adecuadamente con la brida superior del intercambiador de calor.

Con esto completa la inspección del quemador de Benchmark 750/1000
4.6.2 INSPECCIÓN DEL QUEMADOR DE BMK 1500-3000

Se requieren las siguientes piezas para el reensamblado después de la inspección del quemador:

<table>
<thead>
<tr>
<th>Piezas de inspección del quemador</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empaque liberador superior del quemador</td>
<td>BMK 1500/2000: 81183, BMK 2500/3000: 81173</td>
</tr>
<tr>
<td>Empaque medio del quemador</td>
<td>BMK 1500/2000: 81166, BMK 2500/3000: 81180</td>
</tr>
<tr>
<td>Empaque liberador inferior del quemador</td>
<td>BMK 1500/2000: 81186, BMK 2500/3000: 81185</td>
</tr>
<tr>
<td>Empaque de detector de flama (1 cada uno)</td>
<td>BMK 1500/2000: 81048, BMK 2500/3000: 81048</td>
</tr>
</tbody>
</table>

Instrucciones para la inspección del quemador de BMK 1500-3000

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado. Desconecte la corriente AC de la unidad y cierre el suministro de gas.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Desconecte el cable conductor del detector de flama instalado en el plato quemador. Vea la Figura 4-2b (BMK 1500/2000) o la Figura 4-2c (BMK 2500/3000).
4. Retire los dos (2) tornillos que fijan el detector de flama al plato. El detector de flama está fijo al plato del quemador con un (1) tornillo #10-32 y un (1) tornillo #8-32.
5. Retire el detector de flama y el empaque del plato del quemador.

Figura 4-5a: Información de montaje de ensamblado del quemador de BMK 1500/2000
Instrucciones para la inspección del quemador de BMK 1500-3000

Figura 4-5b: Información de montaje de ensamblado del quemador de BMK 1500/2000

Figura 4-5c: Información de montaje de ensamblado del quemador de BMK 2500/3000
Instrucciones para la inspección del quemador de BMK 1500-3000

<table>
<thead>
<tr>
<th>Figura 4-5d: Información de montaje de ensamblado del quemador de BMK 2500/3000</th>
</tr>
</thead>
</table>

6. Desconecte el cable del dispositivo de encendido-inyector.

7. Usando una llave inglesa de extremo abierto de 7/16", desconecte la tuerca de compresión que fija el tubo del inyector de gas al codo del ensamblado de encendido gradual (ver Figura 4-2b para BMK 1500/2000 o Figura 4-2c para BMK 2500/3000). Desconecte el ensamblado de encendido gradual del dispositivo de encendido-inyector.

8. Ahora, afloje y retire el dispositivo de encendido-inyector del plato del quemador usando una llave inglesa de extremo abierto de 1”.

9. Afloje y retire cuatro pernos, arandelas y tuercas de 5/16 x 1-3/4” de la cámara de sobrepresión del ventilador, donde se une al ventilador. Vea la Figura 4-5a y 4-5b, para BMK 1500/2000, o la Figura 4-5c y 4-5, para BMK 2500/3000.

10. Debe aparejar un soporte para que sostenga el ventilador en su lugar o retirar el ventilador de la unidad y ponerlo a un lado para reensamblarlo más tarde.

11. Retire las ocho (8) tuercas de 3/8-16 que unen la cámara de sobrepresión del ventilador al ventilador, usando una llave inglesa de 9/16”. Vea la Figura 4-5a y 4-5b, para BMK 1500/2000, o la Figura 4-5c y 4-5, para BMK 2500/3000.

12. Retire la cámara de sobrepresión del ventilador de entre el ventilador y el quemador y colóquela a un lado para reensamblarla más tarde. El sensor de O₂ y el puerto de observación de la flama permanecen ensamblados a la brida de la cámara de sobrepresión.

13. Retire el quemador jalando hacia arriba.

NOTA:
El ensamblado del quemador pesa aproximadamente 65 lbs. (29.5 kg).
Instrucciones para la inspección del quemador de BMK 1500-3000

14. Retire y reemplace el empaque del quemador (ver la Figura 4-6 que aparece más adelante).

¡IMPORTANTE!

LOS TRES empaques que se proporcionan para mantenimiento DEBEN instalarse durante este procedimiento, como se muestra en la Figura 4-6, incluso si solo es un empaque el que deba reemplazarse. Observe que el EMPAQUE INFERIOR LIBERADOR tiene pestañas que los otros no.

NOTA:
Durante el ensamblado aplique una capa ligera de lubricante antiadherente de alta temperatura a los filamentos del dispositivo de encendido-inyector y conecte a tierra el tornillo. Además, asegúrese de que el dispositivo de encendido-inyector está colocado apropiadamente como se indica en la Figura 4-3b o en la Figura 4-3c. Apriete el dispositivo de encendido-inyector con una fuerza de torsión 14-15 pies-lbs. (19.0-20.3 Nm).

Figura 4-6: Ubicación de quemador descubierto y empaques de replazo

15. Comenzando con el ensamblado del quemador, reinstale todos los componentes en orden inverso en que los retiró. Cuando reinstale la cámara de sobrepresión del ventilador (que retiró en el paso 11), apriete las tuercas de 3/8-16, usando un patrón de par de torsión típico; por ejemplo, apriete ligeramente la segunda tuerca del lado opuesto, una tercera a 90 grados de las primeras dos, y la cuarta en el lado opuesto de la tercera, y después repita esta patrón con las tuercas restantes. Repita el patrón completo una segunda vez para apretar parcialmente las ocho tuercas, y después repita una tercera vez hasta que las ocho tuercas alcancen completamente una torsión de 35 pies libras. (47.5 Nm).

16. Asegúrese de que los fusibles del dispositivo de encendido-inyector y el detector de flama están alineados adecuadamente con la brida superior del intercambiador de calor.

Con esto completa la inspección del quemador de Benchmark 1500/3000
Las calderas Benchmark tienen una trampa de condensado (N/P 24441) localizada en la parte externa de la unidad y adherida a la conexión de drenado con la conexión de salida de gases en la parte trasera del equipo (como se muestra en las Figuras 2-6a y 2-6b de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 [GF-205-LA]). Esta trampa debe inspeccionarse y limpiarse de conformidad con el calendario de mantenimiento que se muestra en la Tabla 4-1, que aparece antes, para garantizar su operación adecuada.

Para inspeccionar y limpiar la trampa, haga lo siguiente:

Instrucciones para mantenimiento de la trampa de drenado de condensado

1. Desconecte la trampa externa del condensado aflojando y retirando las conexiones de los extremos de entrada y salida de la trampa de condensado (ver Figura 4-7).
2. Afloje los cuatro (4) tornillos de ajuste manual que fijan la cubierta de la trampa, y retire la cubierta y la junta tórica debajo de la cubierta.
3. Retire el flotador y limpie muy bien la trampa y el flotador. Inspeccione también la tubería del drenado para eliminar cualquier obstrucción. Si la trampa no puede limpiarse bien, retire la trampa completa (N/P 24441).
4. Remplace el flotador, instale la junta tórica (N/P 84017) y después remplace la cubierta de la tapa.
5. Vuelva a ensamblar todas las conexiones de tubería y manguera a la entrada y salida de la trampa de condensado.

Figura 4-7: Trampa externa de condensado. Vista transversal y detallada
4.8 LIMPIEZA Y REMPLAZO DE FILTRO DE AIRE

La caldera Benchmark está equipada con un filtro de aire que puede limpiarse y volverse a engrasar cada 12 meses y reemplazarse cada 24 meses. El filtro de aire se localiza en la entrada de la válvula de aire-combustible, como se muestra en la Figura 4-8.

<table>
<thead>
<tr>
<th>Modelo Benchmark</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>750, 1000</td>
<td>59139</td>
</tr>
<tr>
<td>1500, 2000</td>
<td>59138</td>
</tr>
<tr>
<td>2500, 3000</td>
<td>88014</td>
</tr>
</tbody>
</table>

Para inspeccionar/remplazar el filtro de aire, haga lo siguiente:

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado. Desconecte la alimentación AC de la unidad.
2. Retire la cubierta superior de la unidad tomando la agarradera superior y alzando. Esto desenganchará la cubierta de los cuatro (4) sujetadores en los paneles laterales.
3. Vea la Figura 4-8 y localice el filtro de aire conectado a la entrada de la válvula de aire-combustible.
4. Usando un destornillador de punta plana o una llave de tuercas de 5/16", afloje la abrazadera que fija el filtro a la brida de la entrada de aire-combustible. Retire el filtro y la abrazadera.
5. Se debe limpiar el filtro con agua caliente jabonosa y retirar la grasa y la suciedad. Después, debe secarlo muy bien y rociarle una capa ligera de aceite para filtro de aire K&N® (o equivalente formulado específicamente para filtros de aire) antes de volverlo a instalar. NO use WD-40.

Figura 4-8: Ubicación del filtro de aire (se muestra BMK 1500/2000)
Instrucciones de limpieza y remplazo de filtro de aire

6. Cada filtro de aire de remplazo está equipado con su abrazadera. Por lo tanto, simplemente instale el filtro de aire de remplazo en la brida de entrada de la válvula de aire-combustible y apriete la abrazadera con un tornillo de cabeza plana o una llave de tuercas de 5/16”.

7. Vuelva a colocar la cubierta superior en la unidad y ponga la caldera en servicio de nuevo.

4.9 PRUEBA DE INTEGRIDAD DEL CAPACITOR DE INTERRUPTOR CORTE DE AGUA

Se deben aplicar pruebas al capacitor de interruptor de corte por bajo nivel de agua para descartar cortocircuitos cada 12 meses y remplazarlos, después debe probarlos cada 24 meses. La prueba de integridad del capacitor de interruptor de corte por bajo nivel de agua consiste en dos partes que se describen en las siguientes dos secciones. El primer procedimiento explica cómo realizar la prueba para verificar cortos circuitos en el capacitor de la sonda del interruptor de corte por bajo nivel de agua, mientras que el segundo procedimiento orienta sobre cómo realizar una prueba estándar de interruptor de corte por bajo nivel de agua usando el Controlador C-More.

Vea la Figura 4-9 para consultar un ejemplo del ensamblado de la sonda de interruptor de corte por bajo nivel de agua y su instalación típica.

Figura 4-9: Ubicación de la sonda para interruptor de corte por bajo nivel de agua (se muestra BMK1500)
4.9.1 Interruptor de corte por bajo nivel de agua: Prueba de cortocircuito al capacitor

Esta prueba determina si hay un cortocircuito entre el capacitor de interruptor de corte por bajo nivel de agua y el intercambiador de calor. Realice la prueba de cortocircuito del capacitor como se describe más adelante.

Interrutor de corte por bajo nivel de agua: Instrucciones para la prueba de cortocircuito al capacitor

1. Ponha la alimentación AC de la unidad en OFF (apagado).

¡CUIDADO!
Se usan altos voltajes para energizar estas unidades, así que es necesario que se corte la corriente de estas antes de realizar el procedimiento descrito en estas instrucciones. No seguir esta advertencia puede ocasionar lesiones graves a las personas, incluso la muerte.

2. Retire el conector del cable del amrés (macho) del conector P-5 (hembra) en el panel frontal del Controlador C-More (ver Figura 4-10).

3. Usando un ohmímetro, conecte una sonda de ohmímetro a la terminal del capacitor de interruptor de corte por bajo nivel de agua en el arnés de la unidad, como se muestra a la izquierda en la Figura 4-11.

4. Conecte la segunda sonda del ohmímetro al Pin #6 del Conector del Arnés (que se retiró del Controlador C-More) como se muestra a la derecha en la Figura 4-11.

Figura 4-10: Retire el cable del arnés del conector P5 en el panel frontal C-More.
4.9.2 Interruptor de corte por bajo nivel de agua. Prueba estándar de C-More

Realice la prueba estándar de interruptor de corte por bajo nivel de agua usando el Controlador C-More como se describe a continuación.

Interruptor de corte por bajo nivel de agua: Instrucciones para prueba estándar de Controlador C-More

1. Ponga la alimentación AC de la unidad en la posición **ON** (encendido).
2. Presione el interruptor **TEST** (prueba) en el Controlador C-More y confirme que el mensaje **LOW WATER LEVEL** (bajo nivel de agua) parpadea en la pantalla de C-More en 4 segundos.
3. Presione la tecla **RESET** (restablecer), seguida del botón **Clear** (limpiar), y confirme que se haya eliminado el mensaje **LOW WATER LEVEL**.

Figura 4-11: Conexión de ohmímetro entre sonda de interruptor de corte por bajo nivel de agua y cable de arnés
4.10 APAGADO DE LA CALDERA DURANTE UN PERIODO PROLONGADO.

Si la caldera va a permanecer fuera de servicio durante un periodo de tiempo prolongado (un año o más), se deben seguir las siguientes instrucciones.

Instrucciones de apagado de la caldera durante un periodo prolongado.

1. Ponga el interruptor ON/OFF del Controlador C-More en posición OFF de apagado, para apagar los controles de operación de la caldera.
2. Desconecte la alimentación AC de la unidad.
3. Cierre el suministro de agua y las válvulas de retorno para aislar la caldera.
5. Abra la válvula liberadora para descargar la presión de agua.

4.11 PUESTA EN SERVICIO DE LA CALDERA DESPUÉS DE UN APAGADO PROLONGADO

Después de un apagado prolongado (un año o más), debe seguir los siguientes procedimientos.

Instrucciones para puesta en servicio de la caldera después de un apagado prolongado

1. Revise los requisitos de instalación que aparecen en la Sección 2 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).
2. Inspeccione toda la tubería y conexiones de la unidad.
3. Confirme que el tubo de ventilación de salida de gases y el de entrada de aire funcionan (cuando aplique).
4. Realice un arranque inicial, como se describe en la Sección 4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).
5. Lleve a cabo las pruebas a los dispositivos de seguridad, así como los procedimientos de mantenimientos planeados, de conformidad con las Secciones 4 y 5 de este manual.
4.12 DISPOSITIVO DE CONTROL DE CHISPA (TRANSDUCTOR DE CORRIENTE AC)

El dispositivo de control de chispa (N/P 61034) evalúa la fuerza de la corriente entre el transformador de encendido y el dispositivo de encendido-inyector. El Cable #140, conectado al transformador de encendido (ver Figura 4-12), pasa a través del orificio del dispositivo de control. Cuando no se detecta una corriente AC apropiada en el cable durante el encendido, la unidad se apaga automáticamente. Los cables del dispositivo de control están conectados a las terminales del Indicador de Chispa del panel I/O (ver sección 2.11.4 en la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 [GF-205-LA] para más detalles).

Figura 4-12: Sensor de detector de chispa (transductor de corriente AC) N/P 61034

Si el dispositivo de control de chispa necesita reemplazarse, abra el orificio del dispositivo de control jalando la pestaña hacia el costado, retire el Cable #140, desconecte los cables del dispositivo de control que vienen del panel I/O, retire el viejo dispositivo de su ubicación, instale uno nuevo en su lugar, enrute el cable #140 a través del orificio del sensor nuevo, y conecte los cables a las terminales del Indicador de Chispa del panel I/O, el cable rojo a la terminal positiva (+), y el negro a la negativa (-)
SECCIÓN 5: GUÍA DE SOLUCIÓN DE PROBLEMAS

5.1 INTRODUCCIÓN

La guía de solución de problemas tiene por objetivo ayudar al personal que da mantenimiento y servicio a aislar las causas de una falla en las calderas Benchmark 750-3000. Los procedimientos para solucionar los problemas que se incluyen aquí se presentan en tablas en las siguientes páginas. Estas tablas están conformadas por tres columnas con los títulos: Indicación de Falla, Causa Probable y Acción Correctiva. Los puntos numerados en las columnas Causa Probable y Acción Correctiva se corresponden entre sí. Por ejemplo, el número 1 de la Causa Probable, corresponde al número 1 de la Acción Correctiva.

Cuando se presenta una falla en la unidad, proceda de la siguiente manera para aislar y corregir la falla.

Instrucciones para corregir la falla

1. Observe los mensajes de falla que se muestran en la pantalla del Controlador C-More.
2. Consulte la columna Indicación de Falla en la Tabla 5-1 de la Solución de Problemas que se presenta a continuación y localice la Falla que mejor describa las condiciones de la situación que se presenta.
3. Continúe a la columna Causa Probable y comience con el primer punto (1) que aparece en la lista de la Indicación de Falla correspondiente.
4. Realice las revisiones y procedimientos que aparecen en la columna Acción Correctiva del primer candidato de Causa Probable.
5. Continúe revisando las otras Causas Probables de la falla que se presenta hasta que ésta se corrija.
6. La Sección 5-2 contiene más información sobre resolución de problemas que aplican cuando no se muestra un mensaje de falla.

Si la falla no puede ser corregida usando la información que se proporciona en las Tablas de Solución de Problemas, contacte a su representante local de AERCO.

NOTA:
El panel frontal del Controlador C-More tiene un puerto RS232. Este puerto es usado únicamente por personal capacitado por la empresa para monitorear las comunicaciones de onAER mediante un equipo de cómputo portátil.
SECCIÓN 5 – GUÍA PARA LA SOLUCIÓN DE PROBLEMAS
TABLA 5-1: Procedimientos de solución de problemas de la caldera

<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFLOW FAULT DURING IGNITION (falla de flujo de aire durante encendido)</td>
<td>1. El ventilador dejó de funcionar debido a una sobrecarga térmica o de corriente.</td>
<td>1. Revise el ventilador de combustión en busca de señales de calor excesivo o drenado con mucha corriente que pueda disparar los dispositivos de sobrecarga térmica o de corriente.</td>
</tr>
<tr>
<td></td>
<td>2. La entrada del ventilador o el filtro de aire de entrada están bloqueados.</td>
<td>2. Inspeccione la entrada del ventilador de combustión, incluido el filtro de aire, en la válvula de aire-combustible para buscar algún bloqueo.</td>
</tr>
<tr>
<td></td>
<td>3. Bloqueo del interruptor de comprobación del ventilador.</td>
<td>3. Retire el interruptor de comprobación del ventilador y revise si hay señales de bloqueo; limpie o reemplace si es necesario.</td>
</tr>
<tr>
<td></td>
<td>4. Bloqueo en el interruptor de entrada bloqueada.</td>
<td>4. Retire el interruptor de entrada bloqueada y revise si hay señales de bloqueo, limpie o reemplace si es necesario.</td>
</tr>
<tr>
<td></td>
<td>5. Interruptor de comprobación del ventilador defectuoso.</td>
<td>5. Revise la continuidad del interruptor de comprobación del ventilador con el funcionamiento del ventilador de combustión. Si hay una lectura errática de la resistencia o la lectura de resistencia es mayor a cero Ohms, remplace el interruptor.</td>
</tr>
<tr>
<td></td>
<td>6. Interruptor de entrada bloqueada defectuoso.</td>
<td>6. Apague la unidad y revise la continuidad del interruptor de entrada bloqueada. Si hay una lectura errática de la resistencia o la lectura de resistencia es mayor a cero Ohms, remplace el interruptor.</td>
</tr>
<tr>
<td></td>
<td>7. Temperatura imprecisa a conexión auxiliar en Caja I/O.</td>
<td>7. Revise la temperatura real del aire de entrada y mida el voltaje en la entrada auxiliar en la Caja I/O. Verifique que el voltaje cumpla con los valores que se muestran en el Apéndice C.</td>
</tr>
<tr>
<td></td>
<td>8. Temperatura de sensor defectuosa.</td>
<td>8. Consulte la ACCIÓN CORRECTIVA 7 y verifique que el voltaje cumpla con los valores que se muestran en el Apéndice C.</td>
</tr>
<tr>
<td></td>
<td>9. Perdida de conexión de cables entre la señal 0-10V de la caja I/O y la potencia de entrada del ventilador.</td>
<td>9. Revise la conexión del cable de la señal 0-10V de la Caja I/O al motor.</td>
</tr>
<tr>
<td></td>
<td>10. Caja I/O defectuosa.</td>
<td>10. Mida el voltaje en la salida 0-10V de la Caja I/O. Un voltaje de 10V es igual a una posición de apertura de válvula de 100%.</td>
</tr>
<tr>
<td></td>
<td>11. Selección equivocada de potencia de salida 0-10V en el Controlador C-More.</td>
<td>11. Revise la opción Analog Out (salida analógica) en el menú Configuration (configuración). Se deberá seleccionar Valve Position 0-10V (posición de válvula 0-10V).</td>
</tr>
<tr>
<td></td>
<td>12. Potenciómetro de válvula de aire-combustible defectuoso.</td>
<td>12. Revise la posición de la válvula de aire-combustible en las posiciones de apertura de 0%, 50% y 100%. Las posiciones en la gráfica de barras VALVE POSITION (posición de válvula) deberá coincidir con las lecturas en el disco de la válvula de aire-combustible.</td>
</tr>
<tr>
<td></td>
<td>13. Dificultad en el encendido de flama.</td>
<td>13. Revise el dispositivo de encendido-inyector para verificar que no haya hollín o erosión del electrodo. Revise la válvula de solenoide del inyector para asegurar que hay una operación adecuada de apertura y cierre.</td>
</tr>
</tbody>
</table>
TABLA 5-1: Procedimientos de solución de problemas de la caldera

<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFLOW FAULT DURING PURGE (falla de flujo de aire durante purga)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. El ventilador no está funcionando o lo hace de manera lenta.</td>
<td></td>
<td>1. Arranque la unidad. Si el ventilador no funciona, revise el relevador de estado sólido del ventilador para confirmar su voltaje de entrada y salida. Si el relevador está bien, revise el ventilador.</td>
</tr>
<tr>
<td>2. Interruptor de entrada bloqueada defectuoso.</td>
<td>2. Arranque la unidad. Si el ventilador funciona, apague la unidad y revise la continuidad del interruptor de entrada bloqueada. Remplace el interruptor si no hay continuidad.</td>
<td></td>
</tr>
<tr>
<td>3. Bloqueo en el filtro de aire o el interruptor de entrada bloqueada.</td>
<td>3. Retire el filtro de aire y el interruptor de entrada bloqueada y verifique si hay signos de obstrucción. Limpie o remplace según sea necesario.</td>
<td></td>
</tr>
<tr>
<td>4. La entrada del ventilador o ducto de entrada están bloqueados.</td>
<td>4. Inspeccione la entrada del ventilador de combustión, incluido cualquier ducto que lleve al ventilador de combustión para revisar si hay alguna señal de bloqueo.</td>
<td></td>
</tr>
<tr>
<td>5. No hay voltaje hacia el interruptor de entrada bloqueada del Controlador C-More.</td>
<td>5. Durante la secuencia de inicio, verifique que haya 24 VAC entre cada lado del interruptor y la conexión a tierra. Si no hay 24 VAC en cada lado, contacte al personal técnico calificado para solucionar esta falla.</td>
<td></td>
</tr>
<tr>
<td>6. Las CAUSAS PROBABLES de la 3 a la 12 de AIRFLOW FAULT DURING IGNITION (falla de flujo de aire durante encendido) aplican en esta falla.</td>
<td>6. Vea del punto 3 al 12 de las ACCIONES CORRECTIVAS de AIRFLOW FAULT DURING IGNITION (falla de flujo de aire durante encendido).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRFLOW FAULT DURING RUN (falla de flujo de aire durante funcionamiento)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. El ventilador dejó de funcionar debido a una sobrecarga térmica o de corriente.</td>
<td>1. Revise el ventilador de combustión en busca de señales de calor excesivo o drenado con un alto consumo de corriente que pueda disparar los dispositivos de sobrecarga térmica o de corriente.</td>
<td></td>
</tr>
<tr>
<td>2. La entrada del ventilador o el filtro de aire de entrada están bloqueados.</td>
<td>2. Inspeccione la entrada del ventilador de combustión, incluido cualquier ducto que lleve al ventilador de combustión, para revisar si hay alguna señal de bloqueo.</td>
<td></td>
</tr>
<tr>
<td>3. Bloqueo en el filtro de aire o el interruptor de entrada bloqueada.</td>
<td>3. Retire el filtro de aire y el interruptor de entrada bloqueada y revise si hay señales de bloqueo, limpie o remplace si es necesario.</td>
<td></td>
</tr>
<tr>
<td>4. Interruptor de entrada bloqueada defectuoso.</td>
<td>4. Verifique que haya 24 VAC entre cada lado del interruptor y la conexión a tierra. Si no hay 24 VAC en ambos lados, replace el interruptor.</td>
<td></td>
</tr>
<tr>
<td>5. Fluctuaciones en la combustión.</td>
<td>5. Ponga a funcionar la unidad a carga plena. Si la unidad hace ruido o funciona de manera forzada, realice una calibración de combustión.</td>
<td></td>
</tr>
<tr>
<td>6. Las causas probables de la 3 a la 16 de AIRFLOW FAULT DURING IGNITION (falla de flujo de aire durante encendido) aplican en esta falla.</td>
<td>6. Vea del punto 3 al 12 de las ACCIONES CORRECTIVAS de AIRFLOW FAULT DURING IGNITION (falla de flujo de aire durante encendido).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELAYED INTERLOCK OPEN (interconexión diferida abierta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. No hay puenteo en la interconexión diferida o no se instaló correctamente.</td>
<td>1. Verifique que el puente esté correctamente instalado en las terminales de interconexión diferida en la Caja I/O.</td>
<td></td>
</tr>
<tr>
<td>2. El interruptor de comprobación de dispositivo enganchado a las interconexiones no está cerrado.</td>
<td>2. Si hay 2 cables externos en estas terminales, revise si un interruptor final de un dispositivo de comprobación (como una bomba, rejillas de ventilación tipo louver, etc.) está unido a estas interconexiones. Asegúrese de que el dispositivo y/o su interruptor final es funcional. Se puede instalar temporalmente un puente para realizar la prueba a las interconexiones.</td>
<td></td>
</tr>
</tbody>
</table>
TABLA 5-1: Procedimientos de solución de problemas de la caldera

<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT DRIVE SIGNAL FAULT</td>
<td>1. No hay señal de accionamiento directo:</td>
<td>1. Revise la Caja I/O para asegurar que la señal esté conectada:</td>
</tr>
<tr>
<td>(falla de señal de accionamiento</td>
<td>─ Aún no está instalada.</td>
<td>─ Conéctela si no está instalada.</td>
</tr>
<tr>
<td>directo)</td>
<td>─ La polaridad está equivocada.</td>
<td>─ Si está instalada, revise la polaridad.</td>
</tr>
<tr>
<td></td>
<td>─ Señal defectuosa en la fuente.</td>
<td>─ Mida el nivel de señal.</td>
</tr>
<tr>
<td></td>
<td>─ Cableado roto o flojo.</td>
<td>─ Revise la continuidad del cableado entre la fuente y la unidad.</td>
</tr>
<tr>
<td></td>
<td>2. La señal no está aislada (flotante).</td>
<td>2. Revise la señal en la fuente para garantizar que está aislada.</td>
</tr>
<tr>
<td></td>
<td>3. Los interruptores de selección del tipo de señal del</td>
<td>3. Revise el interruptor DIP en la tarjeta PMC para confirmar que está configurado</td>
</tr>
<tr>
<td></td>
<td>Controlador C-More no están configurados en el tipo</td>
<td>correctamente para el tipo de señal que se está enviando. Revise el tipo de señal</td>
</tr>
<tr>
<td></td>
<td>correcto de señal (voltaje o corriente).</td>
<td>de control que está configurado en el menú Configuration (configuración).</td>
</tr>
<tr>
<td>FLAME LOSS DURING IGN</td>
<td>1. Detector de flama deteriorado</td>
<td>1. Retire e inspeccione el detector de flama para buscar signos de deterioro.</td>
</tr>
<tr>
<td>(pérdida de flama durante encendido)</td>
<td>2. No hay chispa en el dispositivo de encendido.</td>
<td>Remplace de ser necesario.</td>
</tr>
<tr>
<td></td>
<td>3. Transformador de encendido defectuoso.</td>
<td>2. Cierre la válvula interna de gas en la unidad. Instale y cebé el arco de un</td>
</tr>
<tr>
<td></td>
<td>4. Panel de encendido/de pasos (IGST) defectuoso</td>
<td>dispositivo de encendido de chispa fuera de la unidad.</td>
</tr>
<tr>
<td></td>
<td>5. SSOV defectuosa.</td>
<td>3. Si no hay chispa, revise que haya 120VAC en el extremo principal del</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transformador de encendido durante el ciclo de encendido.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Si no hay 120VAC, el Tablero IGST en el Controlador C-More puede estar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>defectuoso. Consulte a personal técnico calificado para solucionar esta falla.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Cuando cebé el arco del dispositivo de encendido de chispa de manera externa,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observe el indicador de abierto/cerrado en la válvula de cierre para asegurarse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>que esté abierta. Si la válvula no se abre, revise que haya 120VAC en las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>terminales de entrada de la válvula. Si no hay 120VAC, el Tablero IGST en el</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controlador C-More puede estar defectuoso. Consulte personal técnico calificado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sobre esta falla.</td>
</tr>
<tr>
<td>FLAME LOSS DURING RUN</td>
<td>1. El detector de flama está deteriorado o la cerámica</td>
<td>1. Retire e inspeccione el detector de flama para buscar signos de deterioro o</td>
</tr>
<tr>
<td>(pérdida de flama durante</td>
<td>está fracturada.</td>
<td>alguna fractura en la cerámica. Remplace de ser necesario.</td>
</tr>
<tr>
<td>funcionamiento)</td>
<td>2. Regulador defectuoso.</td>
<td>2. Revise las lecturas de presión de gas usando un calibrador o manómetro dentro</td>
</tr>
<tr>
<td></td>
<td>3. Mala calibración de combustión.</td>
<td>y fuera de la válvula de aire-combustible para verificar que la presión de gas</td>
</tr>
<tr>
<td></td>
<td>4. Residuos en el quemador.</td>
<td>dentro y fuera de la válvula sea la apropiada.</td>
</tr>
<tr>
<td></td>
<td>5. Drenado de condensado obstruido.</td>
<td>3. Revise la calibración de combustión usando los procedimientos en la Sección 4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de la Guía de instalación y arranque de Benchmark 750–3000, OMM-0131 (GF-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>205-LA).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Retire el quemador y revise si hay acumulación de carbón o residuos. Limpie y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reinstale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Retire la obstrucción del drenado de condensado.</td>
</tr>
<tr>
<td>Indicación de Falla</td>
<td>Causas Probables</td>
<td>Acción Correctiva</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| HEAT DEMAND FAILURE (falta en la demanda de calor) | 1. Los Relevadores de Demanda de Calor en el tablero de encendido/de pasos (IGST) no se activaron cuando se les ordenó hacerlo.
2. El relevador está activado cuando no ha habido ninguna Demanda. | 1. Presione el botón CLEAR (limpiar) y reinicie la unidad. Si la falla persiste, replace el tablero de encendido/de pasos (IGST).
2. Relevador defectuoso. Replace el tablero IGST. |
| HIGH EXHAUST TEMPERATURE (temperatura alta en la salida de gases) | 1. Mala calibración de combustión.
2. Intercambiador de calor carbonizado debido a una calibración de combustión incorrecta. | 1. Revise la calibración de combustión usando los procedimientos en la Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).
2. Si la temperatura de salida de gas excede los 200°F (93.3°C), revise la calibración de combustión. Calibre o repare si es necesario. |
| HIGH GAS PRESSURE (presión alta de gas) | 1. Presión incorrecta de suministro de gas.
2. Actuador de SSOV defectuoso.
3. Interruptor de Presión Alta de Gas defectuoso. | 1. Revise que la presión de gas en la entrada de la SSOV no exceda 14” W.C. (3.49 kPa).
2. Si la presión de gas posterior al actuador de SSOV no puede bajarse para que esté dentro de los rangos especificados en la Tabla 4-1 (gas natural) o la Tabla 4-4 (propano) en la Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA), el actuador de la SSOV puede estar defectuoso.
3. Retire los conductores del interruptor de Presión Alta de Gas. Mida la continuidad en las terminales común (C) y normalmente cerrada (NC) sin flama en la unidad. Remplace el interruptor si no hay continuidad. |
| HIGH WATER TEMP SWITCH OPEN (interruptor de temperatura alta de agua abierto) | 1. Interruptor de temperatura alta de agua defectuoso.
2. Configuraciones PID incorrectas
3. Sensor de temperatura del contenedor defectuoso.
4. Unidad en modo MANUAL.
5. La temperatura fijada de la unidad es mayor al ajuste de temperatura en el interruptor de sobretemperatura.
6. Los cambios en la velocidad de flujo del sistema ocurren más rápido de lo que la unidad puede responder. | 1. Pruebe el interruptor de temperatura para asegurar que se activa en su configuración de temperatura de agua real.
2. Revise las configuraciones PID (ver la Sección 2-7: Menú de afinación, puntos del 1 al 3, para más información). Si se cambió la configuración, registre las lecturas actuales, después restablezca los valores predeterminados.
3. Usando las tablas de resistencia en el Apéndice C, mida la resistencia del sensor del amó y el sensor de BTU a una temperatura de agua conocida.
4. Si la unidad está en modo MANUAL, cambie a modo AUTO (automático).
5. Revise la temperatura fijada de la unidad y del interruptor de temperatura; asegúrese de que el interruptor de temperatura está configurado a una temperatura mayor que la temperatura fijada de la unidad.
6. Si el sistema es un sistema de flujo variable, monitoree los cambios de flujo para asegurar que la velocidad del cambio de flujo no es mayor de la que la unidad puede responder. |
| HIGH WATER TEMPERATURE (temperatura alta de agua) | 1. Vea HIGH WATER TEMP SWITCH OPEN (interruptor de temperatura alta de agua abierto).
2. La configuración de Temp Hi Limit (limite superior de temperatura) es demasiado baja. | 1. Vea HIGH WATER TEMP SWITCH OPEN (interruptor de temperatura alta de agua abierto).
2. Revise la configuración de Temp Hi Limit (limite superior de temperatura). |
TABLA 5-1: Procedimientos de solución de problemas de la caldera

<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN BOARD COMM FAULT (falla de comunicación en el tablero de encendido)</td>
<td>1. Ha ocurrido una falla de comunicación entre la tarjeta PMC y el tablero de encendido/de pasos (IGST).</td>
<td>1. Presione el botón CLEAR (limpiar) y reinicie la unidad. Si la falla persiste, contacte al Personal Técnico calificado.</td>
</tr>
<tr>
<td></td>
<td>1. La válvula de aire-combustible no está girando.</td>
<td>1. Arranque la unidad. La válvula de aire-combustible deberá girar a la posición de purga (abierto). Si la válvula no gira para nada o no lo hace a la posición completamente abierta, revise la calibración de la válvula de aire-combustible. Si la calibración está bien, el problema puede ser la válvula de aire-combustible o el Controlador C-More. Consulte personal técnico calificado sobre esta falla.</td>
</tr>
<tr>
<td></td>
<td>2. Interruptor defectuoso o con corto circuito.</td>
<td>2. Si la válvula de aire-combustible no rota a purga, revise la continuidad del interruptor de encendido entre las terminales NA y COM. Si el interruptor demuestra continuidad cuando no está en contacto con la leva, remplace el interruptor.</td>
</tr>
<tr>
<td></td>
<td>3. El cableado del interruptor no se realizó correctamente.</td>
<td>3. Revise para confirmar que el cableado del interruptor esté bien hecho (es decir, que los números de los cables en las terminales normalmente abiertas son correctos). Si el interruptor tiene un cableado correcto, remplace el interruptor.</td>
</tr>
<tr>
<td></td>
<td>4. Tablero o fusible de suministro de energía defectuoso.</td>
<td>4. Revise los LED DS1 y DS2 en el tablero de suministro de energía. Si no están de manera permanente en ON (encendido) remplace el Tablero de Suministro de Energía).</td>
</tr>
<tr>
<td></td>
<td>5. Tablero IGST defectuoso.</td>
<td>5. Revise el LED DS1 de paquete de datos y verifique que parpadee en ON (encendido) y OFF (apagado) cada segundo. Si no es así, remplace el Tablero IGST.</td>
</tr>
<tr>
<td>IGN SWTCH CLOSED DURING PURGE (interruptor de encendido cerrado durante purga)</td>
<td>1. La válvula de aire-combustible no está girando.</td>
<td>1. Arranque la unidad. La válvula de aire-combustible deberá rotar a la posición de purga (abierto) y después volver a la posición de encendido (hacia cerrado) durante el ciclo de encendido. Si la válvula no gira para nada o no lo hace a la posición completamente abierta, revise la calibración de la Válvula de Aire-Combustible. Si la calibración está bien, el problema puede ser la Válvula de Aire-Combustible o el Controlador C-More. Consulte personal técnico calificado sobre esta falla.</td>
</tr>
<tr>
<td></td>
<td>2. Interruptor de encendido defectuoso.</td>
<td>2. Si la válvula de aire-combustible no rota a posición encendido, revise la continuidad del interruptor de encendido entre las terminales NA y COM cuando están en contacto con la leva.</td>
</tr>
<tr>
<td></td>
<td>3. Tablero o fusible de suministro de energía defectuoso.</td>
<td>3. Revise los LED DS1 y DS2 en el tablero de suministro de energía. Si no están de manera permanente en ON (encendido) remplace el Tablero de Suministro de Energía).</td>
</tr>
<tr>
<td></td>
<td>4. Tablero IGST defectuoso.</td>
<td>4. Revise el LED DS1 de paquete de datos y verifique que parpadee en ON (encendido) y OFF (apagado) cada segundo. Si no es así, remplace el tablero IGST.</td>
</tr>
<tr>
<td>Tabla 5-1: Procedimientos de solución de problemas de la caldera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicación de Falla</td>
<td>Causas Probables</td>
<td>Acción Correctiva</td>
</tr>
</tbody>
</table>
| INTERLOCK OPEN (interconexión abierta) | 1. El puente de la interconexión no está instalado o está abierto.
2. El Sistema de Administración de Energía no tiene habilitada la unidad.
3. El interruptor de comprobación de dispositivo enganchado a las interconexiones no está cerrado. | 1. Verifique que el puente está instalado adecuadamente en las terminales de interconexión en la Caja I/O.
2. Si hay dos cables externos en estas terminales revise cualquier sistema de Administración de Energía para verificar que las unidades estén deshabilitadas (se puede instalar un puente temporalmente para ver si el circuito de interconexión está funcionando).
3. Revise que el interruptor de comprobación de cualquier dispositivo enganchado al circuito de interconexión esté cerrado y que dicho dispositivo es funcional. |
| LINE VOLTAGE OUT OF PHASE (voltaje de línea fuera de fase) | 1. Línea y neutral intercambiados en la Caja de Alimentación AC.
2. Cableado del transformador de suministro de energía incorrecto. | 1. Revise el cable cargado y neutal en la Caja de Alimentación AC para asegurarse que no están invertidos.
2. Revise el cableado del transformador, en la Caja de Alimentación AC, y compárelo con el diagrama de cableado del transformador para asegurar que el cableado es correcto. |
| LOW GAS PRESSURE (presión baja de gas) | 1. Presión incorrecta de suministro de gas.
2. Interruptor de Presión Baja de Gas defectuoso. | 1. Mida la presión de gas posterior al Actuador de la SSOV con flama en la unidad. Asegúrese de que esté por arriba de los valores en la Tabla 5-1 (BMK 750-2500) o de los valores calculados en el paso 4 en la sección 5.2.2 (BMK 3000 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA)).
2. Mida la presión de gas en el interruptor de Presión Baja de Gas. Si es mayor por más de 1 pulgada a la configuración del interruptor de Presión Baja de Gas (ver Table 5-1 para BMK 750-2500) o mayor que el valor calculado en el paso 4 en la subsección 5.2.2 (para BMK 3000) de la sección 5.2 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA), mida la continuidad en todo el interruptor y reemplace si es necesario. |
| LOW WATER LEVEL (bajo nivel de agua) | 1. Nivel de agua insuficiente en el sistema.
2. Circuito de nivel de agua defectuoso.
3. Sonda de nivel de agua defectuosa. | 1. Revise que el sistema tenga suficiente nivel de agua.
2. Pruebe el circuito de nivel de agua usando los botones LOW WATER TEST (prueba de bajo nivel de agua) y RESET (restablecer valores) en el panel frontal del Controlador C-More. Remplace el circuito de nivel de agua si no responde.
3. Revise la continuidad del extremo de la sonda en el contenedor, cambie la sonda si no hay continuidad. |
<p>| MODBUS COMMFAULT (falla de comunicación en el Modbus) | La unidad no ve la información de la red de Modbus. | Revise las conexiones de la red. Si la falla persiste, contacte al Personal Técnico calificado. |</p>
<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
</table>
| **PRG SWTCH CLOSED** (interruptor de purga cerrado durante encendido) | 1. La Válvula de Aire-Combustible abrió a purga y no giró a posición de encendido.
2. Interruptor defectuoso o con corto circuito.
3. El cableado del interruptor no se realizó correctamente.
4. Tablero o fusible de suministro de energía defectuoso.
5. Tablero IGST defectuoso. | 1. Arranque la unidad. La Válvula de Aire-Combustible deberá rotar a la posición de purga (abierta) y después volver a la posición de encendido (hacia cerrado) durante el ciclo de encendido. Si la válvula no gira para nada o no lo hace a la posición completamente abierta, revise la calibración de la Válvula de Aire-Combustible. Si la calibración está bien, el problema puede ser la Válvula de Aire-Combustible o el Controlador C-More. Consulte personal técnico calificado sobre esta falla.
2. Si la válvula de aire-combustible no rota a la posición de encendido, revise la continuidad del interruptor de purga entre las terminales NA y COM. Si el interruptor muestra continuidad cuando no está en contacto con la leva, revise que el cableado del interruptor esté correcto (números de cables correctos en las terminales normalmente abiertas).
3. Si el interruptor tiene un cableado correcto, reemplace el interruptor.
4. Revise los LED DS1 y DS2 en el tablero de suministro de energía. Si no están de manera permanente en ON (encendido), reemplace el Tablero de Suministro de Energía.
5. Revise el LED DS1 de paquete de datos y verifique que parpadee en ON (encendido) y OFF (apagado) cada segundo. Si no es así, reemplace el tablero IGST. |
| **PRG SWTCH OPEN** (interruptor de purga abierto durante purga) | 1. Interruptor de purga defectuoso.
2. No hay voltaje en el interruptor.
3. El cableado del interruptor no se realizó correctamente.
4. Tablero o fusible de suministro de energía defectuoso.
5. Tablero IGST defectuoso. | 1. Si la válvula de aire-combustible rota, revise la continuidad del interruptor de Purga al cerrar. Remplace el interruptor si no hay continuidad.
2. Verifique que haya 24 VAC en cada lado del interruptor y la conexión a tierra. Si no hay 24 VAC, contacte con personal técnico calificado para solucionar esta falla.
3. Revise para confirmar que el cableado del interruptor esté bien hecho (es decir, que los números de los cables en las terminales normalmente abiertas son correctos).
4. Revise los LED DS1 y DS2 en el tablero de suministro de energía. Si no están de manera permanente en ON (encendido) reemplace el Tablero de Suministro de Energía.
5. Revise el LED DS1 de paquete de datos y verifique que parpadee en ON (encendido) y OFF (apagado) cada segundo. Si no es así, reemplace el tablero IGST. |
| **OUTDOOR TEMP SENSOR FAULT** (falla de sensor de temperatura exterior) | 1. Cableado flojo o roto.
2. Sensor defectuoso.
3. Sensor incorrecto. | 1. Inspeccione el sensor de Temperatura Exterior para verificar que no esté flojo o roto el cableado.
2. Revise la resistencia del sensor para determinar si está dentro de los valores especificados.
3. Asegúrese de que se instaló el sensor correcto. |
<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ % OUT OF RANGE</td>
<td>1. Calibración de Combustión incorrecta.</td>
<td>1. Revise el Analizador de Combustión y recalibre la caldera.</td>
</tr>
<tr>
<td>(de O₂ fuera de rango)</td>
<td>2. Tubo de aire de entrada o rejillas de ventilación tipo louver bloqueados.</td>
<td>2. Desbloquee la entrada de aire y mida el área de apertura del aire para combustión en la habitación.</td>
</tr>
<tr>
<td>RECIRC PUMP FAILURE</td>
<td>1. La bomba interna de recirculación falló.</td>
<td>1. Remplace la bomba de recirculación.</td>
</tr>
<tr>
<td>(falla en la bomba de recirculación)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMOTE SETPT SIGNAL FAULT</td>
<td>1. No haya señal para ajuste remoto de temperatura fijada:</td>
<td>1. Revise la Caja I/O para asegurar que la señal esté conectada.</td>
</tr>
<tr>
<td>(falla en la señal de ajuste remoto de temperatura fijada)</td>
<td>Aún no está instalada</td>
<td>Conéctela si no está instalada.</td>
</tr>
<tr>
<td></td>
<td>La polaridad está equivocada.</td>
<td>Si está instalada, revise la polaridad.</td>
</tr>
<tr>
<td></td>
<td>Señal defectuosa en la fuente.</td>
<td>Mida el nivel de señal.</td>
</tr>
<tr>
<td></td>
<td>Cableado roto o flojo.</td>
<td>Revise la continuidad del cableado entre la fuente y la unidad.</td>
</tr>
<tr>
<td></td>
<td>2. La señal no está aislada (flotante) si es de 4 a 20 mA.</td>
<td>2. Revise la señal en la fuente para confirmar que está aislada.</td>
</tr>
<tr>
<td></td>
<td>3. Los interruptores de selección del tipo de señal del Controlador C-More no están configurados en el tipo correcto de señal (voltaje o corriente).</td>
<td>3. Revise el interruptor DIP en la tarjeta PMC para confirmar que está configurado correctamente para el tipo de señal que se está enviando. Revise la configuración del tipo de señal de control en la opción 6 del menú Configuration (configuración) (ver Sección 2.6: Menú de configuración).</td>
</tr>
<tr>
<td>RESIDUAL FLAME</td>
<td>1. Detector de Flama defectuoso.</td>
<td>1. Remplace el Detector de Flama.</td>
</tr>
<tr>
<td>(flama residual)</td>
<td>2. Laa SSOV no está completamente cerrada</td>
<td>2. Revise la ventana del indicador abierto/cerrado de la Válvula de Cierre de Seguridad (SSOV) y asegúrese de que la SSOV esté completamente cerrada. Si no se está completamente cerrada, remplace la válvula o el actuador. Cierre la Válvula de Cierre de Gas posterior a la SSOV (ver Sección 1, Figura 1-1). Instale un manómetro o calibrador en el puerto de detección de la fuga, entre la SSOV y la Válvula de Cierre de Gas. Si se observa alguna lectura de presión de gas, remplace el Actuador y/o Válvula SSOV.</td>
</tr>
<tr>
<td>SSOV FAULT DURING PURGE</td>
<td>Vea SSOV SWITCH OPEN (interruptor de SSOV abierto)</td>
<td></td>
</tr>
<tr>
<td>(falla de SSOV durante purga)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSOV FAULT DURING RUN</td>
<td>El interruptor de SSOV se cierra durante 15 segundos durante el funcionamiento.</td>
<td>1. Remplace o ajuste el microinterruptor en el actuador de SSOV. Si la falla persiste, remplace el actuador.</td>
</tr>
</tbody>
</table>
TABLA 5-1: Procedimientos de solución de problemas de la caldera

<table>
<thead>
<tr>
<th>Indicación de Falla</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSOV RELAY FAILURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(falla en el relevador de SSOV)</td>
<td>1. El relevador de SSOV falló en el Tablero IGST.</td>
<td>1. Presione el botón CLEAR (limpiar) y reinicie la unidad. Si la falla persiste, remplace el tablero de encendido/de pasos (IGST).</td>
</tr>
<tr>
<td></td>
<td>2. Neutral flotante.</td>
<td>2. El cable Neutral y la Conexión a Tierra no están conectados a la fuente y, por lo tanto, hay medición de voltaje entre los dos. Normalmente esta medición debería ser casi cero o de apenas algunos milivoltios.</td>
</tr>
<tr>
<td></td>
<td>3. Cable con carga y neutral invertidos en SSOV.</td>
<td>3. Revise el cableado de alimentación de SSOV.</td>
</tr>
<tr>
<td>SSOV SWITCH OPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(interruptor de SSOV abierto)</td>
<td>1. El actuador no permite el cierre completo de la válvula de gas.</td>
<td>1. Observe la operación de la Válvula de Cierre de Seguridad (SSOV) mediante el indicador en el actuador de la Válvula y asegúrese de que la válvula esté completamente cerrada (no parcialmente).</td>
</tr>
<tr>
<td></td>
<td>2. La SSOV está energizada cuando no debería.</td>
<td>2. Si la SSOV nunca se cierra, quizás esté continuamente energizada. Cierre el suministro de gas y corte la energía de la unidad. Consulte personal técnico calificado sobre esta falla.</td>
</tr>
<tr>
<td></td>
<td>3. Interruptor o actuador defectuoso.</td>
<td>3. Retire la cubierta eléctrica de la SSOV y revise la continuidad del interruptor. Si el interruptor no muestra continuidad con la válvula de gas cerrada, ajuste o reemplace el interruptor o el actuador.</td>
</tr>
<tr>
<td></td>
<td>4. El cableado del interruptor es incorrecto.</td>
<td>4. Asegúrese de que el interruptor de Prueba de Cierre de la SSOV esté conectado correctamente.</td>
</tr>
<tr>
<td>STEPPER MOTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAILURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(falla en el motor de pasos)</td>
<td>1. Válvula de Aire-Combustible sin calibrar.</td>
<td>1. Revise el Manual de usuario del Controlador C-More OMM-0032 (GF-112) y realice el procedimiento de Calibración de Retroalimentación de Pasos que se menciona en la Sección 6, subsección 6.2.1.</td>
</tr>
<tr>
<td></td>
<td>2. Válvula de Aire-Combustible desconectada.</td>
<td>2. Revise que la Válvula de Aire-Combustible esté conectada al Controlador C-More.</td>
</tr>
<tr>
<td></td>
<td>3. Conexión de cableado al motor de pasos floja.</td>
<td>3. Verifique que no haya conexiones flojas entre el motor de la Válvula de Aire-Combustible y el amén de cableado.</td>
</tr>
<tr>
<td></td>
<td>4. Motor de pasos de válvula de aire-combustible defectuoso.</td>
<td>4. Remplace el motor de pasos.</td>
</tr>
<tr>
<td></td>
<td>5. Tablero o fusible de suministro de energía defectuoso.</td>
<td>5. Revise los LED DS1 y DS2 en el tablero de suministro de energía. Si no están de manera permanente en ON (encendido) reemplace el Tablero de Suministro de Energía.</td>
</tr>
<tr>
<td></td>
<td>6. Tablero IGST defectuoso.</td>
<td>6. Revise el LED DS1 de paquete de datos y verifique que parpadee en ON (encendido) y OFF (apagado) cada segundo. Si no es así, remplace el tablero IGST.</td>
</tr>
</tbody>
</table>

5.2 OTRAS FALLAS SIN MENSAJE DE FALLA ESPECÍFICO

Vea la Tabla 5-2 para resolver fallas que pueden presentarse sin que se muestre un mensaje de falla específico.

TABLA 5-2: Resolución de problemas con la caldera sin que se muestre un mensaje de falla
<table>
<thead>
<tr>
<th>Incidente experimentado</th>
<th>Causas Probables</th>
<th>Acción Correctiva</th>
</tr>
</thead>
</table>
| Dificultad en el encendido de flama | 1. Inyector de gas obstruido o dañado en el dispositivo de encendido-inyector (Figura 4-1a a la 4-1c).
2. Solenoide de encendido gradual defectuoso (Figura 4-1a a la 4-1c). | 1. Desconecte el solenoide en el ensamblado de encendido gradual del tubo del inyector de gas en el dispositivo de encendido-inyector (Figure 4-1a a la Figure 4-1c) e inspeccione el Inyector de Gas para confirmar que no esté obstruido o dañado.
2. Cierre la Válvula de Cierre de Manual. Intente iniciar la unidad y trate de escuchar el sonido de "clic" que hace el Solenoide Encendido Gradual durante la Prueba de Encendido. Si no se escucha el "clic" después de 2 o 3 intentos, remplace el Solenoide de Encendido Gradual. |
| Presión de gas fluctuante | 1. La presión de gas que entra a la unidad es fluctuante.
2. No se instalaron orificios de amortiguación. | 1. Estabilice la presión del gas que entra a la unidad. Si es necesario, diagnostique el Regulador de Suministro del Edificio.
2. Revise si se supone que el tren de gas tiene Orificios de Amortiguación y, si así es, asegúrese de que está instalado en el Actuador de SSOV, como se muestra en la Figura 5-1 que aparece a continuación. En los trenes de gas DBB, el Orificio de Amortiguación está instalado en la parte posterior al Actuador de la SSOV. |
| Irregularidad en la Válvula de Aire-Combustible en la Posición de Válvula 70% | 1. El tablero IGST y el Tablero de Suministro de Energía en el Controlador C-More están obsoletos. | 1. Verifique que el Tablero IGST y el Tablero de Suministro de Energía son Rev. E o posterior. |

Figura 5-1: Actuador de SSOV con ajuste de presión de gas (SKP25)

ORIFICIO DE AMORTIGUACIÓN
TORNILLO DE CUBIERTA
TORNILLO DE Cabeza HEXAGONAL DE LATÓN
(Retire para tener acceso al tornillo de ajuste de presión de gas).
Apéndice A: Descripciones de las Opciones del Menú OPERATING (operación)

Vea la Sección 2.4 Menú OPERATING (operación) para consultar el rango de opciones y valores predeterminados.

<table>
<thead>
<tr>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Active Setpoint (temperatura fijada activa)</td>
<td>Esta es la temperatura fijada a la cual se configura el control cuando opera en Modo Constant Setpoint (temperatura fijada constante), Remote Setpoint (ajuste remoto de temperatura fijada) o Outdoor Reset (reset exterior). Cuando se está en el Modo Constant Setpoint (temperatura fijada constante), este valor es igual a la configuración de temperatura fijada interna en el Menú Configuration (configuración). Cuando se está en el modo Remote Setpoint (ajuste remoto de temperatura fijada), este valor es la temperatura fijada equivalente a la señal analógica remota que se proporciona a la unidad. Cuando se está en modo Outdoor Reset (reset exterior), es el valor derivado de las tablas en el Apéndice E.</td>
</tr>
<tr>
<td>2 Outlet Temp (temperatura de salida)</td>
<td>Muestra la temperatura de agua de salida.</td>
</tr>
<tr>
<td>3 Inlet Temp (temperatura de entrada)</td>
<td>Muestra la temperatura de agua de entrada.</td>
</tr>
<tr>
<td>4 Air Temp (temperatura de aire)</td>
<td>Temperatura del aire es la temperatura del aire en la entrada a la Válvula de Aire-Combustible. Esta lectura es uno de los parámetros que se usan para controlar la velocidad del Motor del Ventilador.</td>
</tr>
<tr>
<td>5 Outdoor Temp (temperatura exterior)</td>
<td>La temperatura exterior se muestra en °F o °C únicamente cuando el sensor de temperatura exterior está instalado y habilitado.</td>
</tr>
<tr>
<td>6 Valve Position In (potencia de entrada de posición de válvula)</td>
<td>Posición de válvula en la potencia de entrada deseada. Esta normalmente sería la misma que la posición de la válvula de flama que se muestra en la gráfica de barras (potencia de salida de la posición de la válvula) cuando la caldera está en operación.</td>
</tr>
<tr>
<td>7 Valve Position Out (potencia de salida de la posición de la válvula)</td>
<td>Muestra en tiempo real la Posición de Válvula efectiva.</td>
</tr>
<tr>
<td>8 FFWD Temp (temperatura de compensación dinámica)</td>
<td>Muestra la temperatura del cabezal de BST.</td>
</tr>
<tr>
<td>9 Exhaust Temp (temperatura de salida de gases)</td>
<td>Muestra la temperatura de salida de gases en °F (predeterminado) o °C.</td>
</tr>
<tr>
<td>10 Flame Strength (potencia de flama)</td>
<td>Muestra la potencia de flama entre 0% y 100%.</td>
</tr>
<tr>
<td>11 Min Flame Str (potencia de flama mínima)</td>
<td>Not Used (sin usar)</td>
</tr>
<tr>
<td>12 O2 Monitor (dispositivo de control de O2)</td>
<td>Habilita o deshabilita el Dispositivo de Control de O2</td>
</tr>
<tr>
<td>13 Oxygen Level (nivel de oxígeno)</td>
<td>Muestra en tiempo real el nivel (%) de combustión de oxígeno (O2) que mide el sensor de O2.</td>
</tr>
<tr>
<td>14 Ignition Time (tiempo de encendido)</td>
<td>Muestra el tiempo transcurrido entre la confirmación de la apertura de la válvula de gas (PDC) hasta que se detecta una flama estable.</td>
</tr>
<tr>
<td>15 SSOV Time to OPN (tiempo para que la SSOV abra)</td>
<td>Muestra el tiempo transcurrido desde que se aplicaron 120VAC a la Válvula de Gas hasta la confirmación de la apertura de la válvula de gas (PDC).</td>
</tr>
</tbody>
</table>
APÉNDICE A: DESCRIPCIONES DEL MENÚ DE LA CALDERA

<table>
<thead>
<tr>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Spark Current (corriente de chispa)</td>
<td>Muestra la corriente que entra al transformador de encendido.</td>
</tr>
<tr>
<td>17 Run Cycles (ciclos de ejecución)</td>
<td>Muestra el número total de ciclos de ejecución.</td>
</tr>
<tr>
<td>18 Run Hours (horas de ejecución)</td>
<td>Muestra el tiempo total de funcionamiento de la unidad en horas.</td>
</tr>
<tr>
<td>19 Fault Log (historial de fallas)</td>
<td>Muestra información sobre las últimas 20 fallas.</td>
</tr>
</tbody>
</table>

Hay un parámetro adicional asociado con el menú Operating (operación), **Manual Valve Pos** (posición de válvula manual) (Mín = 0, Máx = 100) que no aparece en este menú, pero puede mostrarse apretando el botón **Auto/Man** (automático/manual), en la parte frontal del Controlador C-More.
TABLA A-2: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ SETUP (CONFIGURAR)

Vea la Sección 2-5 Menú SETUP (configurar) para consultar el rango de opciones y valores predeterminados.

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Password (contraseña)</td>
<td>Permite ingresar contraseñas Nivel 1 o Nivel 2. Ingresar Contraseñas Nivel 1 (159) permite modificar las opciones en los menús Setup (configurar), Configuration (configuración) y Tuning (afinación). Ingresar la Contraseña Nivel 2 (6817) permite cambiar o activar las opciones en los Menús Calibration (calibración) y Diagnostics (diagnóstico), además de todas las opciones en el Menú de Nivel 1.</td>
</tr>
<tr>
<td>2</td>
<td>Language (idioma)</td>
<td>Permite la selección del idioma en los mensajes que se muestran. Actualmente, la única opción es inglés.</td>
</tr>
<tr>
<td>3</td>
<td>Time (hora)</td>
<td>Permite que el usuario configure la hora entre 12:00 a. m. y 11:59 p. m.</td>
</tr>
<tr>
<td>4</td>
<td>Date (fecha)</td>
<td>Permite que el usuario configure la fecha entre 01/01/00 y 31/12/99.</td>
</tr>
<tr>
<td>5</td>
<td>Unit of Temp (unidad de temperatura)</td>
<td>Permite la selección de los mensajes de temperaturas en grados Fahrenheit (°F) o grados Celsius (°C).</td>
</tr>
<tr>
<td>6</td>
<td>Comm Address (dirección de comunicación)</td>
<td>Para las comunicaciones de RS-485. RS232 deberá tener su propia contraseña (programable).</td>
</tr>
<tr>
<td>7</td>
<td>Baud Rate (velocidad de transferencia)</td>
<td>Permite configurar la velocidad de transferencia de las comunicaciones (2400 a 19.2K). El valor predeterminado es 9600.</td>
</tr>
<tr>
<td>8</td>
<td>onAER Mode (modo onAER)</td>
<td>Permite la selección Ethernet o Tarjeta SD.</td>
</tr>
<tr>
<td>9</td>
<td>Min Upload Timer (temporizador de carga mínima)</td>
<td>Obligatorio para la Recolección Remota de Datos de onAER de AERCO (ORDC, OnAER Remote Data Collection). Este parámetro habilita la recolección ORDC y establece la cantidad mínima de tiempo entre cargas de paquetes de datos en segundos. El LED COMM (comunicación) se encenderá durante la carga de datos.</td>
</tr>
<tr>
<td>10</td>
<td>Unit Alpha (letra de la unidad)</td>
<td>Obligatorio para la Recolección Remota de Datos de onAER de AERCO. Este valor debe coincidir con el primer dígito alfabético en la Placa de Código; por ejemplo, G-17-1234.</td>
</tr>
<tr>
<td>11</td>
<td>Unit Year (año de la unidad)</td>
<td>Obligatorio para la Recolección Remota de Datos de onAER de AERCO. Este valor debe coincidir con el número de año a dos dígitos en la Placa de Código; por ejemplo, G-17-1234.</td>
</tr>
<tr>
<td>12</td>
<td>Unit Serial # (número de serie de la unidad)</td>
<td>Obligatorio para OnAER de AERCO Recolección Remota de Datos. Este valor debe coincidir con el número de serie de cuatro dígitos en la Placa de Código; por ejemplo, G-17-1234.</td>
</tr>
<tr>
<td>13</td>
<td>Software Version (versión del software)</td>
<td>Identifica la versión que se está usando del software del Controlador C-More.</td>
</tr>
</tbody>
</table>
TABLA A-3: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ CONFIGURATION (CONFIGURACIÓN)

Vea la Sección 2-6 Menú CONFIGURATION (configuración) para consultar el rango de opciones y valores predeterminados.

Los valores del menú Configuration (configuración) vienen predeterminados de acuerdo con los requisitos especificados en cada orden individual. No se necesitarán cambios en condiciones normales de operación.

<table>
<thead>
<tr>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Internal Setpoint (temperatura fijada interna)</td>
</tr>
<tr>
<td>2</td>
<td>Unit Type (tipo de unidad)</td>
</tr>
<tr>
<td>3</td>
<td>Unit Size (tamaño de la unidad)</td>
</tr>
<tr>
<td>4</td>
<td>Fuel Type (tipo de combustible)</td>
</tr>
<tr>
<td>5</td>
<td>Boiler Mode (modo de caldera)</td>
</tr>
<tr>
<td>6</td>
<td>Remote Signal (señal remota)</td>
</tr>
<tr>
<td>7</td>
<td>Outdoor Sensor (sensor exterior)</td>
</tr>
<tr>
<td>8</td>
<td>Bldg Ref Temp (temperatura de referencia del edificio)</td>
</tr>
<tr>
<td>9</td>
<td>Reset Ratio (ajuste de acción integral)</td>
</tr>
<tr>
<td>10</td>
<td>System Start Tmp (temperatura de inicio del sistema)</td>
</tr>
<tr>
<td>11</td>
<td>Setpt Lo Limit (límite inferior de temperatura fijada)</td>
</tr>
<tr>
<td>12</td>
<td>Setpt Hi Limit (límite superior de temperatura fijada)</td>
</tr>
<tr>
<td>13</td>
<td>Temp Hi Limit (límite superior de temperatura)</td>
</tr>
<tr>
<td>14</td>
<td>Max Valve Position (posición máxima de válvula)</td>
</tr>
<tr>
<td>15</td>
<td>Pump Delay Timer (temporizador de retardo de bomba)</td>
</tr>
<tr>
<td>OPCIONES DEL MENÚ</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>16 Aux Start On Dly (arranque auxiliar diferido)</td>
<td>Especifica la cantidad de tiempo de espera (hasta 120 segundos) entre la activación del Relevador Auxiliar (debido a una solicitud) y la revisión de la secuencia de purga para arrancar la unidad.</td>
</tr>
<tr>
<td>17 Failsafe Mode (modulo mecanismo de seguridad)</td>
<td>Permite configurar el modo Failsafe (mecanismo de seguridad) en la opción Constant Setpoint (temperatura fijada constante) o Shutdown (apagado).</td>
</tr>
<tr>
<td>18 Analog Output (salida analógica)</td>
<td>Debe configurarse en Valve Pos 0-10V (posición de válvula 0-10V) en todos los modelos Benchmark. NO CAMBIE los valores predeterminados.</td>
</tr>
<tr>
<td>19 Lo Fire Timer (temporizador de flama baja)</td>
<td>Especifica cuánto tiempo (entre 2 y 600 segundos) permanecerá la posición de flama baja después de encendido, antes de entrar en la potencia de salida deseada.</td>
</tr>
<tr>
<td>20 Setpt Limiting (limitación de temperatura fijada)</td>
<td>Setpoint Limiting (limitación de temperatura fijada) puede estar Enabled (habilitada) o Disabled (deshabilitada).</td>
</tr>
<tr>
<td>21 Setpt Limit Band (banda de límite de temperatura fijada)</td>
<td>La Setpoint Limit Band (banda de límite de temperatura fijada) puede configurarse entre 0°F y 10°F (0°C y 5.5°C).</td>
</tr>
<tr>
<td>22 Network Timeout (tiempo de permanencia de la red)</td>
<td>Especifica el valor de permanencia en segundos antes de determinar que hay una falla de Modbus, hasta 999 segundos.</td>
</tr>
<tr>
<td>23 Shutoff Dly Temp (temperatura de apagado diferido)</td>
<td>Esta característica retrasa el apagado de una caldera con el objetivo de reducir el exceso de ciclos. Específica el hasta qué valor de la temperatura tiene permitido ascender la Temperatura de Salida por arriba de la temperatura fijada antes de comenzar el apagado.</td>
</tr>
<tr>
<td>24 Demand Offset (compensación de demanda)</td>
<td>Esta entrada reducirá el exceso de ciclos ON/OFF (encendido/apagado) en modo AUTO (automático). Cuando esta entrada es un valor diferente de cero, la unidad no se encenderá de nuevo hasta que Valve Position In (potencia de entrada de la posición de la válvula), la opción 7 en el menú Operating (operación), alcance el valor del Start Level (nivel de inicio) y Outlet Temperature (temperatura de salida) se reduzca más allá del Active Setpoint (temperatura fijada activa) en Demand Offset (compensación de demanda). Además, la caldera se encenderá en el nivel de Posición de Válvula (Valve Position) 29% o menos durante un periodo de un minuto. Cuando este dato se configure en cero, la unidad se encenderá de nuevo tan pronto como Valve Position In (potencia de entrada de la posición de la válvula) alcance el valor Start Level (nivel de inicio), es decir, la opción 37 del menú Calibration (calibración). No habrá un minuto de retraso cuando la flama esté en el nivel de Posición de Válvula 29%.</td>
</tr>
<tr>
<td>25 Deadband High (banda inactiva superior)</td>
<td>Las configuraciones Deadband High (banda inactiva superior) y Deadband Low (banda inactiva inferior) crean una zona de "Temperatura de Salida" en la que no se realizarán correcciones a la Posición de Válvula. Se asume que la ZONA de la banda inactiva opera con una Temperatura de Salida entre la Temperatura Fijada Activa + la Banda Inactiva Superior y la Temperatura Fijada Activa - la Banda Inactiva Inferior. Cuando la Temperatura de Salida alcanza la Temperatura Fijada Activa y permanece allí durante un periodo mayor a 15 segundos, la unidad entrará a DEADBAND MODE (modo de banda inactiva). En este punto no se realizarán correcciones a la Posición de la Válvula mientras la Temperatura de Salida permanezca en cualquier punto dentro de la ZONA de la banda inactiva. Cuando la unidad está en el DEADBAND MODE (modo de banda inactiva), el LED de °F o °C parpadeará prendido y apagado. Cuando la Temperatura de Salida tienda a ir fuera de la ZONA de Banda Inactiva, el DEADBAND MODE (modo de banda inactiva) se terminará y el CIRCUITO DE PID de nuevo intentará hacer correcciones a la Posición de la Válvula. El rango de configuración es de 0°F (0°C) a 25°F (13.75°C). El valor predeterminado es 5°F (2.75°C) tanto para la Banda Inactiva Superior como Inferior.</td>
</tr>
<tr>
<td>26 Deadband Low (banda inactiva inferior)</td>
<td></td>
</tr>
<tr>
<td>27 IGST Version (versión de IGST)</td>
<td>Muestra la versión del Tablero IGST que está instalada.</td>
</tr>
<tr>
<td>28 IGN Time Setting (configuración de tiempo de encendido)</td>
<td>Muestra el tiempo de encendido MÁXIMO de entre 4 y 7 segundos, según esté configurado en el Arnés de Secuencia de Seguridad.</td>
</tr>
</tbody>
</table>
TABLA A-3: Descripciones de las opciones del menú CONFIGURATION (configuración)

<table>
<thead>
<tr>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Slow Shutdown (apagado lento)</td>
<td>Configura la característica de Slow Shutdown (apagado lento) en Enabled (habilitado) o Disabled (deshabilitado).</td>
</tr>
<tr>
<td>30 Slow Sht Duration (duración de apagado lento)</td>
<td>Si el Slow Shutdown (apagado lento) está configurado Enabled (habilitado), esta opción establece el tiempo en que una caldera continuará funcionando en el Stop Level (nivel de tope) después de funcionar arriba del nivel de Umbral de Apagado Lento, hasta 9,999 segundos.</td>
</tr>
<tr>
<td>31 Slow Sht Threshold (umbral de apagado lento)</td>
<td>Configura el Nivel de Flama arriba del cual una caldera activará la característica de Apagado Lento.</td>
</tr>
<tr>
<td>32 O₂ Warnings (advertencias de O₂)</td>
<td>Habilita o deshabilita los mensajes de advertencia de AERtrim.</td>
</tr>
<tr>
<td>33 O₂ Trim ID (identificación de ajuste de O₂)</td>
<td>Muestra un el número de identificación de 4 dígitos de AERtrim. Prellenado en todas las unidades. Cambia cada vez que la unidad es encendida.</td>
</tr>
<tr>
<td>34 Fixed ID (Identificación fija)</td>
<td>Muestra el número de identificación fijo de 4 dígitos de la unidad. Prellenado en todas las unidades. No cambia.</td>
</tr>
<tr>
<td>35 O₂ Trim Key (clave de ajuste de O₂)</td>
<td>Muestra el valor del código de licencia de 4 dígitos de AERtrim. Prellenado en todas las unidades.</td>
</tr>
<tr>
<td>36 O₂ Trim Menu (menú de ajuste de O₂)</td>
<td>Cuando está configurado en Enabled (habilitado), aparecen las opciones del menú de AERtrim.</td>
</tr>
<tr>
<td>37 BST Menu (menú BST)</td>
<td>Cuando está configurado en Enabled (habilitado), aparecen las opciones del menú de BST.</td>
</tr>
</tbody>
</table>
APÉNDICE A: DESCRIPCIONES DEL MENÚ DE LA CALDERA

TABLA A-4: DESCRIPTICIONES DE LAS OPCIONES DEL MENÚ TUNING (AFINACIÓN)

Vea la Sección 2-7 Menú TUNING (afinación) y consulte el rango de opciones y valores predeterminados

<table>
<thead>
<tr>
<th>OPCIONES DEL MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prop Band (banda proporcional)</td>
<td>Genera un nivel de flama con base en el error que haya entre la temperatura fijada y la temperatura de salida real. Si el error real es menor a la configuración de la banda proporcional (1°F a 120°F, 0.55°C a 66°C), el nivel de flama será menor a 100%. Si el error es igual o mayor que la configuración de la banda proporcional, el nivel de flama será 100%.</td>
</tr>
<tr>
<td>2 Integral Gain (ganancia integral)</td>
<td>Configura la fracción de potencia de salida que, debido al error en la temperatura fijada, se añadirá o quitará de la potencia de salida cada minuto para acercarse a la temperatura fijada. La ganancia se puede ajustar entre 0.00 y 1.00 (el valor predeterminado es 1.0).</td>
</tr>
<tr>
<td>3 Derivative Time (tiempo derivativo)</td>
<td>Este valor (0.0 a 2.0 min) responde al rango de variación del error de la temperatura fijada. Es el tiempo que a esta acción le lleva alcanzar la potencia de salida.</td>
</tr>
</tbody>
</table>

Warmup (precalentamiento) – Esta característica, incluida en las opciones 4, 5 y 6 del menú, elimina los sobrecalentamientos durante el periodo de precalentamiento de un ciclo de encendido en frío en todas las calderas, al modificar temporalmente el parámetro PID GAIN (ganancia PID) durante el precalentamiento y por un periodo que se determina en el menú Tuning (afinación).

4 Warmup Prop Band (banda proporcional de precalentamiento)	Rango = 1 – 120°F (0.55°C a 66°C)	Predeterminado = 95 (52°C)
5 Warmup Int Gain (ganancia interna de precalentamiento)	Rango = 0.00 – 2.00	Predeterminado = .50
6 Warmup PID Timer (temporizador PID de precalentamiento)	Rango = 0 – 240 segundos	Predeterminado = 20 segundos
7 Reset Defaults? (¿restablecer valores predeterminados?)	Permite restablecer los valores de las opciones del menú Tuning (afinación) a los valores predeterminados de fábrica.	
TABLA A-5: DESCRIPCIÓN DE LAS OPCIONES DEL MENÚ COMBUSTION CALIBRATION (CALIBRACIÓN DE COMBUSTIÓN)

Vea la Sección 2-8 Menú COMBUSTION CALIBRATION (calibración de combustión) para consultar el rango de opciones y valores predeterminados

NOTA:
Se debe ingresar la Contraseña Nivel 2 para ver las opciones en el menú Combustion Cal (calibración de combustión). Este Menú se usa durante los procedimientos de Calibración de Combustión descritos en la Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAL Voltage (calibración de voltaje): BMK 750 = 18% BMK 1000 = 18% BMK 1500 = 16% BMK 2000 = 18% BMK 2500 = 16% BMK 3000 = 14%</td>
<td>Muestra el voltaje predeterminado del convertidor DC que se suministra al ventilador en cada posición de Válvula de Aire-Combustible (opciones 1 – 6). Dicho voltaje de convertidor ajusta la velocidad de rotación del ventilador para maximizar la eficiencia.</td>
</tr>
<tr>
<td>2 CAL Voltage (calibración de voltaje) 30%</td>
<td></td>
</tr>
<tr>
<td>3 CAL Voltage (calibración de voltaje) 40%</td>
<td></td>
</tr>
<tr>
<td>4 CAL Voltage (calibración de voltaje) 50%</td>
<td></td>
</tr>
<tr>
<td>5 CAL Voltage (calibración de voltaje) 70%</td>
<td></td>
</tr>
<tr>
<td>6 CAL Voltage (calibración de voltaje) 100%</td>
<td></td>
</tr>
<tr>
<td>7 Set Valve Position (establecer posición de válvula)</td>
<td>Permite configurar la selección de la posición de la Válvula de Aire-Combustible (% de apertura) entre 0 y 100%.</td>
</tr>
<tr>
<td>8 Blower Output (potencia de salida del ventilador)</td>
<td>Permite monitorear el voltaje del convertidor DC al ventilador.</td>
</tr>
<tr>
<td>9 Set Stby V out (configurar voltaje de salida en reposo)</td>
<td>Permite configurar el voltaje de reposo entre 0 y 4.00 voltios.</td>
</tr>
<tr>
<td>10 Oxygen Level (nivel de oxígeno)</td>
<td>Permite que el nivel de oxígeno de combustión se muestre (0% a 25%)</td>
</tr>
</tbody>
</table>
APÉNDICE A: DESCRIPCIONES DEL MENÚ DE LA CALDERA

TABLA A-6: DESCRIPCIONES DE LAS OPCIONES DEL MENÚ CALIBRATION (CALIBRACIÓN)

Vea la Sección 2-10 Menú CALIBRATION (calibración) para consultar el rango de opciones y valores predeterminados

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Stepper Fbk (retroalimentación de pasos)</td>
<td>Permite calibrar la corriente del motor de pasos de la Válvula de Aire-Combustible en las posiciones 0% (completamente cerrada) y 100% (completamente abierta). También se pueden hacer verificaciones en la posición 50%.</td>
</tr>
<tr>
<td>2 Purge Timer (temporizador de purga)</td>
<td>Permite ajustar el tiempo de purga antes del encendido.</td>
</tr>
<tr>
<td>3 Post Purge Timer (temporizador de post purga)</td>
<td>Permite ajustar el tiempo de purga cuando una unidad se apaga.</td>
</tr>
<tr>
<td>4 IGN Position (posición de encendido)</td>
<td>Permite ajustar la posición de la válvula (Nivel de Flama) durante la secuencia de encendido.</td>
</tr>
<tr>
<td>5 Ign Pos Hold Tmr (temporizador de retención después de encendido)</td>
<td></td>
</tr>
<tr>
<td>6 FFWD Temp Disply (pantalla de temperatura de compensación dinámica)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>7 Outlet Tmp Disply (pantalla de temperatura de salida)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>8 Inlet Tmp Disply (pantalla de temperatura de entrada)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>9 Valv Pos Out Dsp (pantalla de potencia de salida de posición de válvula)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>10 Exhaust Tmp Dsp (pantalla de temperatura de salida de gases)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>11 Exhaust Safety (seguridad de salida de gases)</td>
<td>Enabled (habilitado) o Disabled (deshabilitado)</td>
</tr>
<tr>
<td>12 Flue Material (material para tubo de salida de gases)</td>
<td>Selecciona el material del tubo de salida de gases: PVC, Polypropylene (polipropileno) o Stainless (acero inoxidable)</td>
</tr>
<tr>
<td>13 Exhst Fault Temp (temperatura para falla de salida de gases)</td>
<td>Temperatura del umbral de falla</td>
</tr>
<tr>
<td>14 Exhst Module Temp (temperatura de módulo de salida de gases)</td>
<td>Disminuye la Posición de Válvula para reducir la temperatura de salida de gases.</td>
</tr>
<tr>
<td>15 Exhst Warn Temp (temperatura de advertencia de salida de gases)</td>
<td>Advertencia de temperatura alta en la salida de gases.</td>
</tr>
<tr>
<td>16 Exhst Tmp VP Adj (ajuste de posición de válvula por temperatura de salida de gases)</td>
<td>Valor del ajuste de posición de válvula.</td>
</tr>
<tr>
<td>17 Exhst Adj Rate (rango de ajuste de salida de gases)</td>
<td>Rango de ajuste de posición de válvula</td>
</tr>
</tbody>
</table>
APÉNDICE A: DESCRIPCIONES DEL MENÚ DE LA CALDERA

<p>| TABLA A-6: Descripciones de las opciones del menú CALIBRATION (calibración) |</p>
<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 VP Change Rate (nivel de cambio de posición de válvula)</td>
<td>Permite ajustar el nivel de cambio de la posición de la Válvula (Nivel de Flama) cuando se sube la posición de válvula. La elevación del nivel de posición de válvula se define en segundos por paso.</td>
</tr>
<tr>
<td>19 VP Up Rate (nivel de incremento de de posición de válvula)</td>
<td>Permite ajustar el nivel de incremento de la Posición de la Válvula (Nivel de Flama) cuando se sube la posición de válvula. La disminución del nivel de posición de válvula se establece en Segundos por Paso.</td>
</tr>
<tr>
<td>20 VP Down Rate (nivel de disminución de posición de válvula)</td>
<td>Permite ajustar la velocidad del ventilador (Voltaje de Salida del Ventilador) durante el ciclo de purga.</td>
</tr>
<tr>
<td>21 Purge Blwr Offst (compensación de ventilador de purga)</td>
<td>Permite ajustar la velocidad del ventilador (Voltaje de Salida del Ventilador) durante el ciclo de purga cuando se usa un Convertidor VFD Emerson para controlar el Motor del Ventilador.</td>
</tr>
<tr>
<td>22 4-20mA Purge Pct (porcentaje de purga a 4-20mA)</td>
<td>Permite ajustar el ciclo de trabajo de Modulación de Ancho de Pulso (PWM) de -5.0% a +5.0% en incrementos de 0.1%.</td>
</tr>
<tr>
<td>23 PWM In Adj (ajuste en entrada PWM)</td>
<td>Permite ajustar la entrada analógica de -5.0% a +5.0%.</td>
</tr>
<tr>
<td>24 Analog In Adj (ajuste de la entrada analógica)</td>
<td>Permite ajustar la entrada analógica de -5.0% a +5.0%.</td>
</tr>
<tr>
<td>25 Flow In Adj (ajuste de entrada de flujo)</td>
<td>Permite ajustar la Velocidad de Entrada de Flujo de agua de -5.0% a +5.0%.</td>
</tr>
<tr>
<td>26 Supply Gas Pressure In Adj (ajuste de entrada de presión de gas de suministro)</td>
<td>Permite ajustar el nivel de Presión de Suministro de GAS de -5.0% a +5.0% en incrementos de 0.1 %.</td>
</tr>
<tr>
<td>27 Gas Plate dp In Adj (ajuste de entrada Dp de placa de gas)</td>
<td>Permite ajustar el nivel de DP de Placa de Gas de -5.0% a +5.0% en incrementos de 0.1%.</td>
</tr>
<tr>
<td>28 mA Out Adj (ajuste de salida mA)</td>
<td>Permite ajustar la salida de miliamperes de -5.0 mA a +5.0 mA.</td>
</tr>
<tr>
<td>29 A/F Sensitivity (sensibilidad aire-combustible)</td>
<td>Permite ajustar la sensibilidad del motor de pasos de la Válvula de Aire-Combustible de 1% a 5% en incrementos de 1%.</td>
</tr>
<tr>
<td>30 Power Reset (restablecer energía)</td>
<td>Permite configurar la opción de restablecer energía en AUTO (automático) o MANUAL.</td>
</tr>
<tr>
<td>31 Water Temp Reset (restablecer temperatura de agua)</td>
<td>Permite configurar la función de restablecer temperatura en AUTO o MANUAL.</td>
</tr>
<tr>
<td>32 Gas Press Reset (restablecer presión de gas)</td>
<td>Permite configurar la función de Restablecer Presión de Gas en AUTO o MANUAL.</td>
</tr>
<tr>
<td>33 Min Off Time (tiempo mínimo de apagado)</td>
<td>Permite configurar Tiempo de mínimo Apagado entre 0 y 10 minutos.</td>
</tr>
<tr>
<td>34 Stop Level (nivel de tope)</td>
<td>Permite configurar el Nivel de Tope en un rango de posición de válvula de 0% al Nivel de Inicio configurado en ese momento.</td>
</tr>
<tr>
<td>35 Start Level (nivel de inicio)</td>
<td>Permite configurar el Nivel de Inicio en un rango de posición de válvula del Nivel de Tope en ese momento a un máximo de 40%.</td>
</tr>
</tbody>
</table>

CARACTERÍSTICA SKIP (SALTO):
Las opciones de la 38 a la 40 incluyen una característica que permite que el usuario establezca una Zona de Flama que el Controlador C-More evitará. En el raro caso de una unidad emita algún ruido molesto a cierto Nivel de Flama y ningún otro remedio resuelva el problema, una zona de salto de Nivel de Flama puede definirse para ordenar al C-More que se salte el Nivel de Flama establecido.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>– Skip Range Cntr</td>
<td>Establece el Centro (Nivel de Flama) de la banda de salto.</td>
</tr>
<tr>
<td>– Skip Range Span</td>
<td>Define la banda positiva y negativa de la Amplitud de la Zona de Salto.</td>
</tr>
</tbody>
</table>
APÉNDICE A: DESCRIPCIONES DEL MENÚ DE LA CALDERA

TABLA A-6: Descripciones de las opciones del menú CALIBRATION (calibración)

<table>
<thead>
<tr>
<th>OPCIÓN DE MENÚ</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 – Skip Speed</td>
<td>Establece la velocidad (Segundos/Nivel de flama) en la que la banda será saltada.</td>
</tr>
<tr>
<td>Configuraciones de O₂:</td>
<td></td>
</tr>
<tr>
<td>39 – O₂ Gain (ganancia de O₂)</td>
<td>Rango = 0.5 a 1.5 (ganancia unitaria, no hay modelos)</td>
</tr>
<tr>
<td>40 – O₂ Offset (compensación de O₂)</td>
<td>Rango = -3.0 a +3.0</td>
</tr>
<tr>
<td>41 – O₂ Sensor (sensor de O₂)</td>
<td>Activa el sensor de O₂</td>
</tr>
<tr>
<td>42 – Cal Temp Sensors</td>
<td>Permite calibrar el sensor de temperatura</td>
</tr>
<tr>
<td>Compensación por canal de temperatura:</td>
<td></td>
</tr>
<tr>
<td>45 – FFWD Temp Offset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>44 – Exhst Tmp Ofset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>45 – Outdr Air Offset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>46 – Inlet Air Offset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>47 – Inlet Wtr Offset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>48 – Outlet Wtr Offset</td>
<td>Rango: -20 a + 20 (ºF o °C)</td>
</tr>
<tr>
<td>49 24 hr Max Cycles</td>
<td>Ciclos máximos en un periodo de 24 horas.</td>
</tr>
<tr>
<td>50 24 hr Max Ovrtemp</td>
<td>Sobretemperatura máxima en un periodo de 24 horas.</td>
</tr>
<tr>
<td>51 0-10v Out Test</td>
<td>Establece el voltaje del ventilador en 0-10v para aplicación de pruebas.</td>
</tr>
<tr>
<td>52 Spark Monitor</td>
<td>Habilita o deshabilita la función de Dispositivo de Control de Chispa, el cual muestra la corriente AC en la potencia de entrada del Transformador de Encendido.</td>
</tr>
<tr>
<td>53 Min Spark Amps</td>
<td>Permite ajustar la corriente de chispa mínima que se requiere en la potencia de entrada del transformador de chispa.</td>
</tr>
<tr>
<td>54 Max Spark Amps</td>
<td>Permite ajustar la corriente de chispa máxima que se requiere en la potencia de entrada del transformador de chispa.</td>
</tr>
<tr>
<td>MENSAJE</td>
<td>DESCRIPCIÓN</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DEMAND DELAY (retraso de demanda) XX seg</td>
<td>Se muestra si el Retraso de Demanda se activa.</td>
</tr>
<tr>
<td>DISABLED (deshabilitado) HH:MM am/pm MM/DD/AA</td>
<td>Se muestra si el interruptor ON/OFF está en OFF (apagado). La pantalla también muestra la hora (am o pm) y la fecha en que la unidad se deshabilitó.</td>
</tr>
<tr>
<td>FLAME PROVEN (flama comprobada)</td>
<td>Se muestra después de que una flama ha sido detectada durante un periodo de 2 segundos. Inicialmente, la potencia de flama se muestra en %. Después de transcurridos 5 segundos, la hora y la fecha se muestran en lugar de la potencia de flama.</td>
</tr>
<tr>
<td>IGNITION TRIAL (prueba de encendido) XX seg</td>
<td>Se muestra durante una prueba de encendido de la secuencia de arranque. La duración del ciclo se cuenta en segundos.</td>
</tr>
<tr>
<td>PURGING (purgando) XX seg</td>
<td>Se muestra durante el ciclo de purga del arranque. La duración del ciclo se cuenta en segundos.</td>
</tr>
<tr>
<td>STANDBY (reposo)</td>
<td>Se muestra cuando el interruptor ON/OFF está en posición ON (encendido), pero no hay demanda de calor. La hora y la fecha también se muestran.</td>
</tr>
<tr>
<td>WAIT (espera)</td>
<td>Pide al operador que espere.</td>
</tr>
<tr>
<td>WARMUP (precalentamiento) XX seg</td>
<td>Se muestra durante 2 minutos en el precalentamiento inicial únicamente.</td>
</tr>
</tbody>
</table>
TABLA B-2: MENSAJES DE FALLA

<table>
<thead>
<tr>
<th>MENSAJE DE FALLA</th>
<th>DESCRIPCIÓN DE FALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFLOW FAULT DURING PURGE</td>
<td>El interruptor de Comprobación del Ventilador se abrió durante la purga o la entrada de aire está bloqueada.</td>
</tr>
<tr>
<td>AIRFLOW FAULT DURING IGN</td>
<td>El interruptor de Comprobación del Ventilador se abrió durante el encendido.</td>
</tr>
<tr>
<td>AIRFLOW FAULT DURING RUN</td>
<td>El interruptor de Comprobación del Ventilador se abrió durante el funcionamiento de la unidad.</td>
</tr>
<tr>
<td>DELAYED INTERLOCK OPEN</td>
<td>La Interconexión Diferida está abierta.</td>
</tr>
<tr>
<td>DIRECT DRIVE SIGNAL FAULT</td>
<td>No hay señal de accionamiento directo o está fuera de rango.</td>
</tr>
<tr>
<td>FFWD TEMP SENSOR FAULT</td>
<td>La temperatura medida por el Sensor de Compensación Dinámica está fuera de rango.</td>
</tr>
<tr>
<td>FLAME LOSS DURING IGN</td>
<td>No se detectó la señal de flama durante el encendido o se perdió 5 segundos después del encendido.</td>
</tr>
<tr>
<td>FLAME LOSS DURING RUN</td>
<td>La señal de Flama se perdió durante el funcionamiento del equipo.</td>
</tr>
<tr>
<td>HEAT DEMAND FAILURE</td>
<td>Los Relevadores de Demanda de Calor en el tablero de encendido no se activaron cuando se les ordenó hacerlo.</td>
</tr>
<tr>
<td>HIGH EXHAUST TEMPERATURE</td>
<td>La Temperatura de Salida de Gases superó los 200°F (93.3°C).</td>
</tr>
</tbody>
</table>
TABLA B-2: Mensajes de falla

<table>
<thead>
<tr>
<th>MENSAJE DE FALLA</th>
<th>DESCRIPCIÓN DE FALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS PRESSURE FAULT</td>
<td>El interruptor de Límite de Presión Alta de Gas está abierto o el interruptor de Límite de Presión Baja de Gas está abierto.</td>
</tr>
<tr>
<td>HIGH WATER TEMPERATURE</td>
<td>La temperatura que, medida por el Sensor de Salida, excedió el Límite Superior de Temperatura establecido.</td>
</tr>
<tr>
<td>IGN BOARD COMM FAULT</td>
<td>Ha ocurrido una falla de comunicación entre la tarjeta PMC y el tablero de encendido.</td>
</tr>
<tr>
<td>IGN SWITCH CLOSED DURING PURGE</td>
<td>El interruptor de Límite de Posición de Encendido en la Válvula de Aire-Combustible se cerró durante la purga.</td>
</tr>
<tr>
<td>IGN SWITCH OPEN DURING IGNITION</td>
<td>El interruptor de Límite de Posición de Encendido en la Válvula de Aire-Combustible se abrió durante el encendido.</td>
</tr>
<tr>
<td>INTERLOCK OPEN</td>
<td>La Interconexión Remota está abierta.</td>
</tr>
<tr>
<td>LINE VOLTAGE OUT OF PHASE</td>
<td>La línea (cargada) y los cables neutrales están invertidos.</td>
</tr>
<tr>
<td>LOW WATER LEVEL</td>
<td>El panel del interruptor de corte de agua por nivel bajo indica un nivel de agua bajo.</td>
</tr>
<tr>
<td>NETWORK COMM FAULT</td>
<td>No hay información de la red RS-485 o esta se encuentra dañada.</td>
</tr>
<tr>
<td>O₂ % OUT OF RANGE</td>
<td>El % de O₂ ha disminuido más de 3% o aumentado más del 8%.</td>
</tr>
<tr>
<td>OUTDOOR TEMP SENSOR FAULT</td>
<td>La temperatura medida por el Sensor de Aire Exterior está fuera de rango.</td>
</tr>
<tr>
<td>OUTLET TEMP SENSOR FAULT</td>
<td>La temperatura medida por el Sensor de Salida está fuera de rango.</td>
</tr>
<tr>
<td></td>
<td>• Pantalla de OUTLET TEMPERATURE (temperatura de salida) = SHT,</td>
</tr>
</tbody>
</table>
TABLA B-2: Mensajes de falla

<table>
<thead>
<tr>
<th>MENSAJE DE FALLA</th>
<th>DESCRIPCIÓN DE FALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperatura de salida)</td>
<td>lo que indica que el sensor tiene un cortocircuito</td>
</tr>
<tr>
<td>• Pantalla OUTLET TEMPERATURE (temperatura de salida)= Opn, lo que indica que el sensor está en circuito abierto.</td>
<td></td>
</tr>
<tr>
<td>PRG SWITCH CLOSED DURING IGNITION</td>
<td>El interruptor de Límite de Posición de Purga en la Válvula de Aire-Combustible se cerró durante el encendido.</td>
</tr>
<tr>
<td>(interruptor de purga cerrado durante encendido)</td>
<td></td>
</tr>
<tr>
<td>PRG SWITCH OPEN DURING PURGE</td>
<td>El interruptor de Límite de Posición de Purga en la Válvula de Aire-Combustible se abrió durante la purga.</td>
</tr>
<tr>
<td>(interruptor de purga abierto durante purga)</td>
<td></td>
</tr>
<tr>
<td>REMOTE SETPT SIGNAL FAULT</td>
<td>No hay señal para el ajuste remoto de temperatura fijada o está fuera de rango.</td>
</tr>
<tr>
<td>(falla en la señal de ajuste remoto de temperatura fijada)</td>
<td></td>
</tr>
<tr>
<td>RESIDUAL FLAME</td>
<td>La señal de flama fue detectada durante más de 60 segundos en estado de reposo.</td>
</tr>
<tr>
<td>(flama residual)</td>
<td></td>
</tr>
<tr>
<td>SSOV SWITCH OPEN</td>
<td>El interruptor de la SSOV se abrió durante el reposo.</td>
</tr>
<tr>
<td>(interruptor de SSOV abierto)</td>
<td></td>
</tr>
<tr>
<td>SSOV FAULT DURING PURGE</td>
<td>El interruptor de la SSOV se abrió durante la purga.</td>
</tr>
<tr>
<td>(falla de SSOV durante purga)</td>
<td></td>
</tr>
<tr>
<td>SSOV FAULT DURING IGN</td>
<td>El interruptor de SSOV se cerró o no abrió durante el encendido.</td>
</tr>
<tr>
<td>(falla SSOV durante encendido)</td>
<td></td>
</tr>
<tr>
<td>SSOV FAULT DURING RUN</td>
<td>El interruptor de SSOV se cerró por más de 15 segundos durante el funcionamiento.</td>
</tr>
<tr>
<td>(falla de SSOV durante funcionamiento)</td>
<td></td>
</tr>
<tr>
<td>SSOV RELAY FAILURE</td>
<td>Se detectó una falla en uno de los relevadores que contralan la SSOV.</td>
</tr>
<tr>
<td>(falla en el relevador de SSOV)</td>
<td></td>
</tr>
<tr>
<td>STEPPER MOTOR FAILURE</td>
<td>El Motor de Pasos no logró mover la Válvula de Aire-Combustible a la posición deseada.</td>
</tr>
<tr>
<td>(falla en el motor de pasos)</td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE B – MENSAJES DE ARRANQUE, ESTATUS Y FALLA
APÉNDICE B – MENSAJES DE ARRANQUE, ESTATUS Y FALLA

(Esta página está intencionalmente en blanco)
<table>
<thead>
<tr>
<th>TEMPERATURA</th>
<th>RES (OHMS)</th>
<th>VOLTÍOS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td>-40</td>
<td>779.0</td>
</tr>
<tr>
<td>-30</td>
<td>-34.4</td>
<td>797.5</td>
</tr>
<tr>
<td>-20</td>
<td>-28.9</td>
<td>816.3</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
<td>835.4</td>
</tr>
<tr>
<td>0</td>
<td>-17.2</td>
<td>854.8</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
<td>874.6</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
<td>894.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
<td>915.1</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
<td>935.9</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>956.9</td>
</tr>
<tr>
<td>60</td>
<td>15.5</td>
<td>978.3</td>
</tr>
<tr>
<td>70</td>
<td>21.1</td>
<td>1000.0</td>
</tr>
<tr>
<td>80</td>
<td>26.7</td>
<td>1022.0</td>
</tr>
<tr>
<td>90</td>
<td>32.2</td>
<td>1044.4</td>
</tr>
<tr>
<td>100</td>
<td>37.8</td>
<td>1067.0</td>
</tr>
<tr>
<td>110</td>
<td>43.3</td>
<td>1090.0</td>
</tr>
<tr>
<td>120</td>
<td>48.9</td>
<td>1113.3</td>
</tr>
<tr>
<td>130</td>
<td>54.4</td>
<td>1137.0</td>
</tr>
<tr>
<td>140</td>
<td>60</td>
<td>1160.9</td>
</tr>
<tr>
<td>150</td>
<td>65.6</td>
<td>1185.2</td>
</tr>
<tr>
<td>160</td>
<td>71.1</td>
<td>1209.5</td>
</tr>
<tr>
<td>170</td>
<td>76.7</td>
<td>1234.7</td>
</tr>
<tr>
<td>180</td>
<td>82.2</td>
<td>1260.0</td>
</tr>
<tr>
<td>190</td>
<td>87.8</td>
<td>1285.6</td>
</tr>
<tr>
<td>200</td>
<td>93.3</td>
<td>1311.4</td>
</tr>
<tr>
<td>210</td>
<td>98.9</td>
<td>1337.7</td>
</tr>
<tr>
<td>220</td>
<td>104.4</td>
<td>1364.2</td>
</tr>
<tr>
<td>230</td>
<td>110</td>
<td>1391.0</td>
</tr>
<tr>
<td>240</td>
<td>115.6</td>
<td>1418.2</td>
</tr>
<tr>
<td>250</td>
<td>121.1</td>
<td>1445.7</td>
</tr>
</tbody>
</table>
APÉNDICE C – TABLA DE RESISTENCIA/VOLTAJE DEL SENSOR

(Esta página está intencionalmente en blanco)
Apéndice D: PRUEBAS PERIÓDICAS RECOMENDADAS

¡CUIDADO!
Se deben realizar pruebas periódicas a todos los controles y dispositivos de seguridad de la caldera, para determinar que están operando como fueron diseñados. Se deben tomar precauciones mientras se realizan las pruebas para protegerse contra lesiones corporales o daños a la propiedad. El propietario o usuario de un sistema automático de calderas deberá establecer un sistema formal de mantenimiento preventivo y aplicación de pruebas. Las pruebas deberán llevarse a cabo de manera regular y los resultados se registrarán en una bitácora.

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>FRECUENCIA</th>
<th>ACCIÓN REALIZADA POR</th>
<th>COMENTARIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibradores, dispositivos de control e indicadores</td>
<td>Diariamente</td>
<td>Operador</td>
<td>Inspección visual y registro de las lecturas en la bitácora del operador.</td>
</tr>
<tr>
<td>Configuración de instrumentos y equipo</td>
<td>Diariamente</td>
<td>Operador</td>
<td>Revisión visual y comparación con las especificaciones recomendadas por la fábrica.</td>
</tr>
<tr>
<td></td>
<td>Semanalmente</td>
<td>Operador</td>
<td>Verificar las configuraciones de fábrica.</td>
</tr>
<tr>
<td>Control de Nivel de Flama</td>
<td>Cada seis meses</td>
<td>Personal Técnico</td>
<td>Revisión con equipo de prueba de calibración de combustión (ver Sección 4.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 [GF-205-LA]) y Sensor de O₂ en la Sección 4.4 de esta guía.</td>
</tr>
<tr>
<td>Conexión de salida de gases, ventilación, acumulación o conexión de aire de entrada.</td>
<td>Mensualmente</td>
<td>Operador</td>
<td>Condición en inspección visual y verificación de obstrucciones.</td>
</tr>
<tr>
<td>Dispositivo de encendido-inyector de chispa</td>
<td>Semanalmente</td>
<td>Operador</td>
<td>Vea la Sección 4.2.</td>
</tr>
<tr>
<td>Prueba de filtración de SSOV</td>
<td>Anualmente</td>
<td>Personal Técnico</td>
<td>Verifique que no haya filtraciones, de acuerdo con las recomendaciones del fabricante (Siemens) de la SSOV.</td>
</tr>
<tr>
<td>Falla de flama</td>
<td>Semanalmente</td>
<td>Operador</td>
<td>Cierre la válvula de gas manual y verifique el apagado de seguridad. Vea la Sección 5.7 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Potencia de señal de flama</td>
<td>Semanalmente</td>
<td>Operador</td>
<td>Revise la potencia de la flama usando el menú Operating (operación) del Controlador C-More (Ver Sección 2.4).</td>
</tr>
<tr>
<td>Corte y alarma por nivel bajo de agua</td>
<td>Semanalmente</td>
<td>Operador</td>
<td>Vea la Sección 5.4 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Prueba de drenado lento</td>
<td>Cada seis meses</td>
<td>Operador</td>
<td>Realice la prueba al drenado lento conforme a la Sección VI, del Código ASME para recipientes y calderas a presión.</td>
</tr>
<tr>
<td>Prueba de control de seguridad de temperatura alta de agua</td>
<td>Anualmente</td>
<td>Personal Técnico</td>
<td>Vea la Sección 5.5 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Controles de operación</td>
<td>Anualmente</td>
<td>Operador</td>
<td>Vea la Sección 2.2.</td>
</tr>
<tr>
<td>Flujo de aire bajo</td>
<td>Mensualmente</td>
<td>Operador</td>
<td>Vea la Sección 5.8 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Interconexiones de presión baja y alta de gas</td>
<td>Mensualmente</td>
<td>Operador</td>
<td>Vea las Secciones 5.2 y 5.3 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>COMPONENTE</td>
<td>FRECUENCIA</td>
<td>ACCIÓN REALIZADA POR</td>
<td>COMENTARIOS</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Interruptor de posición de purga de la</td>
<td>Anualmente</td>
<td>Personal Técnico</td>
<td>Vea la Sección 5.10 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Válvula de Aire-Combustible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interruptor de posición de encendido de</td>
<td>Anualmente</td>
<td>Personal Técnico</td>
<td>Vea la Sección 5.11 de la Guía de instalación y arranque de Benchmark 750 – 3000, OMM-0131 (GF-205-LA).</td>
</tr>
<tr>
<td>Válvula de Aire-Combustible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Válvulas de seguridad</td>
<td>Según se requiera</td>
<td>Operador</td>
<td>Revisión de conformidad con la Sección VI, del Código ASME para recipientes y calderas a presión.</td>
</tr>
<tr>
<td>Inspección los componentes del quemador</td>
<td>Cada seis meses</td>
<td>Personal Técnico</td>
<td>Vea la Sección 4.6.</td>
</tr>
<tr>
<td>Trampa de Condensado</td>
<td>Cada seis meses</td>
<td>Operador</td>
<td>Vea la Sección 4.7.</td>
</tr>
<tr>
<td>Nivel de Oxígeno (O₂)</td>
<td>Mensualmente</td>
<td>Operador</td>
<td>Verifique que el nivel de oxígeno esté entre 3% y 8% durante la operación de la caldera.</td>
</tr>
</tbody>
</table>
Temperatura de cabezal con una temperatura de referencia del edificio de 50°F (10.0°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
</tr>
<tr>
<td>25</td>
<td>-3.9</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
</tr>
<tr>
<td>15</td>
<td>-9.4</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
</tr>
<tr>
<td>-5</td>
<td>-20.6</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
</tr>
<tr>
<td>-15</td>
<td>-26.1</td>
</tr>
<tr>
<td>-20</td>
<td>-28.9</td>
</tr>
</tbody>
</table>

Temperatura de cabezal con una temperatura de referencia del edificio de 60°F (15.6°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>60</td>
<td>15.6</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
</tr>
<tr>
<td>25</td>
<td>-3.9</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
</tr>
<tr>
<td>15</td>
<td>-9.4</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
</tr>
<tr>
<td>-5</td>
<td>-20.6</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
</tr>
<tr>
<td>-15</td>
<td>-26.1</td>
</tr>
<tr>
<td>-20</td>
<td>-28.9</td>
</tr>
</tbody>
</table>

Temperatura de cabezal con una temperatura de referencia del edificio de 65°F (18.3°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>65</td>
<td>18.3</td>
</tr>
<tr>
<td>60</td>
<td>15.6</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
</tbody>
</table>
APÉNDICE E: TABLAS DE RELACIÓN PARA RESET INTERIOR/EXTERIOR

| Temperatura de cabezal con una temperatura de referencia del edificio de 70°F (21.1°C) |
|----------------------------------|---|
| **TEMPERATURA DE AIRE** | **AJUSTE DE ACCIÓN INTEGRAL** |
| °F | °C | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 |
| 70 | 21.1 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
| 65 | 18.3 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 |
| 60 | 15.6 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | 92 | 94 |
| 55 | 12.8 | 79 | 82 | 85 | 88 | 91 | 94 | 97 | 100 | 103 | 106 |
| 50 | 10.0 | 82 | 86 | 90 | 94 | 98 | 102 | 106 | 110 | 114 | 118 |
| 45 | 7.2 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 |
| 40 | 4.4 | 88 | 94 | 100 | 106 | 112 | 118 | 124 | 130 | 136 | 142 |
| 35 | 1.7 | 91 | 98 | 105 | 112 | 119 | 126 | 133 | 140 | 147 | 154 |
| 30 | -1.1 | 94 | 102 | 110 | 118 | 126 | 134 | 142 | 150 | 158 | 166 |
| 25 | -3.9 | 97 | 106 | 115 | 124 | 133 | 142 | 151 | 160 | 169 | 178 |
| 20 | -6.7 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| 15 | -9.4 | 103 | 114 | 125 | 136 | 147 | 158 | 169 | 180 | 191 | 202 |
| 10 | -12.2| 106 | 118 | 130 | 142 | 154 | 166 | 178 | 190 | 202 | 214 |
| 5 | -15.0| 109 | 122 | 135 | 148 | 161 | 174 | 187 | 200 | 213 | |
| 0 | -17.8| 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 | | |
| -5 | -20.6| 115 | 130 | 145 | 160 | 175 | 190 | 205 | | | |
| -10 | -23.3| 118 | 134 | 150 | 166 | 182 | 198 | 214 | | | |
| -15 | -26.1| 121 | 138 | 155 | 172 | 189 | 206 | | | | |
| -20 | -28.9| 124 | 142 | 160 | 178 | 196 | 214 | | | | |
Temperatura de cabezal con una temperatura de referencia del edificio de 75°F (23.9°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>75</td>
<td>23.9</td>
</tr>
<tr>
<td>70</td>
<td>21.1</td>
</tr>
<tr>
<td>65</td>
<td>18.3</td>
</tr>
<tr>
<td>60</td>
<td>15.6</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
</tr>
<tr>
<td>25</td>
<td>-3.9</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
</tr>
<tr>
<td>15</td>
<td>-9.4</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
</tr>
<tr>
<td>-5</td>
<td>-20.6</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
</tr>
<tr>
<td>-15</td>
<td>-26.1</td>
</tr>
</tbody>
</table>

Temperatura de cabezal con una temperatura de referencia del edificio de 80°F (26.7°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>80</td>
<td>26.7</td>
</tr>
<tr>
<td>75</td>
<td>23.9</td>
</tr>
<tr>
<td>70</td>
<td>21.1</td>
</tr>
<tr>
<td>65</td>
<td>18.3</td>
</tr>
<tr>
<td>60</td>
<td>15.6</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
</tr>
<tr>
<td>25</td>
<td>-3.9</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
</tr>
<tr>
<td>15</td>
<td>-9.4</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
</tr>
<tr>
<td>-5</td>
<td>-20.6</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
</tr>
</tbody>
</table>
Temperatura de cabezal con una temperatura de referencia del edificio de 90°F (32.2°C)

<table>
<thead>
<tr>
<th>TEMPERATURA DE AIRE</th>
<th>AJUSTE DE ACCIÓN INTEGRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>90</td>
<td>32.2</td>
</tr>
<tr>
<td>85</td>
<td>29.4</td>
</tr>
<tr>
<td>80</td>
<td>26.7</td>
</tr>
<tr>
<td>75</td>
<td>23.9</td>
</tr>
<tr>
<td>70</td>
<td>21.1</td>
</tr>
<tr>
<td>65</td>
<td>18.3</td>
</tr>
<tr>
<td>60</td>
<td>15.6</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-1.1</td>
</tr>
<tr>
<td>25</td>
<td>-3.9</td>
</tr>
<tr>
<td>20</td>
<td>-6.7</td>
</tr>
<tr>
<td>15</td>
<td>-9.4</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
</tr>
</tbody>
</table>
Apéndice F: LISTA DE PIEZAS DE BENCHMARK 750/1000

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONEXIÓN DE SALIDA DE GASES</td>
<td></td>
<td>43086</td>
<td>CONEXIÓN: SALIDA DE GASES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84045</td>
<td>SELLO: CONEXIÓN DE SALIDA DE GASES</td>
</tr>
<tr>
<td>ENSAMBLADO DE TREN DE GAS</td>
<td>4</td>
<td>22140-1</td>
<td>ENSAMBLADO DE TREN DE GAS FM ESTÁNDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22140-2</td>
<td>ENSAMBLADO DE TREN DE GAS DBB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22140-3</td>
<td>ENSAMBLADO DE TREN DE GAS DE PROPANO</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>81155</td>
<td>EMPAQUE: BRIDA DE TUBERÍA DE 1 ¼”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24276-TAB</td>
<td>ENSAMBLADO AIRE-COMBUSTIBLE DE QUEMADOR</td>
</tr>
<tr>
<td>QUEMADOR, VÁLVULA DE AIRE-COMBUSTIBLE, INTERCAMBIADOR DE CALOR</td>
<td>8</td>
<td>24276-TAB</td>
<td>ENSAMBLADO AIRE-COMBUSTIBLE DE QUEMADOR</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>46026</td>
<td>QUEMADOR</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>24367-1</td>
<td>Kit de remplazo de Válvula de Aire-Combustible de BMK 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24367-2</td>
<td>Kit de remplazo de Válvula de Aire-Combustible de BMK 750</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>24277</td>
<td>ENSAMBLADO DE ENCENDIDO GRADUAL</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>81143</td>
<td>EMPAQUE: QUEMADOR</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>28576</td>
<td>INTERCAMBIADOR DE CALOR DE BMK 750 (entrada única)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28586</td>
<td>INTERCAMBIADOR DE CALOR DE BMK 1000 (entrada única)</td>
</tr>
<tr>
<td>MANGUERAS Y AISLANTES</td>
<td>18</td>
<td>97087-20</td>
<td>TUBO: PARA GAS, FLEXIBLE, DE 20” (50.8 cm)</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>80080</td>
<td>AISLANTES: ARMAZÓN</td>
</tr>
<tr>
<td>VENTILADOR</td>
<td>20</td>
<td>58061</td>
<td>Kit de remplazo de VENTILADOR BMK 750/100</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24356-1</td>
<td>Kit de remplazo de DETECTOR DE FLAMA</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>61026</td>
<td>SENSÓR DE OXÍGENO BAJO</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>58023</td>
<td>Kit de remplazo de DISPOSITIVO DE ENCENDIDO-INYECTOR</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>59139</td>
<td>FILTRO DE AIRE: 6” X 4.5 (11.4 cm) LG</td>
</tr>
<tr>
<td>CONTROLES</td>
<td>28</td>
<td>123966</td>
<td>INTERRUPTOR: SOBRETENSION - AUTO RESET</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>123552</td>
<td>INTERRUPTOR: SOBRETENSION - MANUAL RESET</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>60011-4</td>
<td>ENSAMBLADO DE INTERRUPTOR DE COMPROBACIÓN DE VENTILADOR</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>61002-5</td>
<td>INTERRUPTOR DE ENTRADA BLOQUEADA - 4.5 W.C</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>65085</td>
<td>TRANSFORMADOR DE ENCENDIDO</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>61034</td>
<td>DISPOSITIVO DE CONTROL DE CHISPA (Transductor AC)</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>60026</td>
<td>INTERRUPTOR DE CIRCUITO MONOPOLAR 20A</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>64081</td>
<td>ECU</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>65011</td>
<td>TRANSFORMADOR 115V/24V 100VA</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>65109</td>
<td>FUENTE DE ALIMENTACIÓN DE 12V</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>65120</td>
<td>BLOQUES DE TERMINALES: DIN MONTADO: NEGRO</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>65121</td>
<td>BLOQUES DE TERMINALES: DIN MONTADO: BLANCO</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>65112</td>
<td>BLOQUE DE CONEX A TIERRA DE TERMINAL: DIN MONTADO</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>65118</td>
<td>TERMINAL DE FUSIBLES: DIN MONTADO</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>64088</td>
<td>TEMPERATURA LÍMITE DE CONTROL</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>24327</td>
<td>ENSAMBLADO: CUBIERTA DE SUMINISTRO DE CORRIENTE</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>69102-2</td>
<td>RELEVADOR DE BOMBA BENCHMARK</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>124512</td>
<td>FUSIBLES: 4 AMP</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>123449</td>
<td>SENSOR: TEMPERATURA</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>58132</td>
<td>Kit de remplazo THERMOWELL</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>69186-4</td>
<td>CONTROLADOR C-MORE</td>
</tr>
</tbody>
</table>
APÉNDICE F – LISTA DE PIEZAS DE BENCHMARK 750/1000

Kit de piezas de repuesto de Benchmark 750/1000 N/P 58037-TAB

<table>
<thead>
<tr>
<th>Número de pieza</th>
<th>Descripción</th>
<th>58037-1 30 PSI Apollo</th>
<th>58037-2 50 PSI Conbraco</th>
<th>58037-3 75 PSI Apollo</th>
<th>58037-4 100 PSI Watts</th>
<th>58037-5 150 PSI Watts</th>
<th>58037-6 60 PSI Watts</th>
<th>58037-7 125 PSI Watts</th>
<th>58037-8 160 PSI Kunkle</th>
</tr>
</thead>
<tbody>
<tr>
<td>24286</td>
<td>Kit de conexión de salida de gases de 6"</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24441</td>
<td>Ensamblado de trampa de condensado</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92006-5</td>
<td>Válvula de bola de 1"</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123675-2</td>
<td>Calibrador triple</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123675-3</td>
<td>Calibrador triple</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123675-4</td>
<td>Calibrador triple</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92014</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-13</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-15</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-16</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-20</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-484</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>92015-361</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123679</td>
<td>Válvula liberadora de presión</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9-234</td>
<td>Unión de rosca de ¾"</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Arnés de cableado (no se muestra en las siguientes figuras)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>63182</td>
<td>ARNÉS: ARMAZÓN</td>
</tr>
<tr>
<td>63083</td>
<td>ARNÉS: SENSOR DE O₂</td>
</tr>
<tr>
<td>63085</td>
<td>ARNÉS: CONTROL</td>
</tr>
<tr>
<td>63090</td>
<td>ARNÉS: CONTROL DE LÍMITE DE TEMPERATURA</td>
</tr>
<tr>
<td>63097</td>
<td>ARNÉS: SENSOR/COMUNICACIÓN I/O</td>
</tr>
<tr>
<td>63147</td>
<td>ARNÉS: CABLEADO: TREN DE GAS</td>
</tr>
<tr>
<td>63150</td>
<td>ARNÉS: VARILLA DE FLAMA</td>
</tr>
<tr>
<td>65104</td>
<td>CABLE: ALTO VOLTAJE ENCENDIDO</td>
</tr>
<tr>
<td>124327</td>
<td>ARNÉS: INTERCONEXIÓN</td>
</tr>
</tbody>
</table>

Kits adicionales disponibles de Benchmark 750/1000

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>27086-1</td>
<td>ACTUADOR: Kit de remplazo INTERRUPTOR SSOV sin PDC</td>
</tr>
<tr>
<td>64048</td>
<td>Kit de remplazo DE SSOV CON REGULADOR DE PRESIÓN</td>
</tr>
</tbody>
</table>

Otros aditamentos/piezas (opcional)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>92084-6</td>
<td>VÁLVULA DE ENCENDIDO SECUENCIAL MOTORIZADA</td>
</tr>
</tbody>
</table>
Apéndice F – Lista de piezas de Benchmark 750/1000

- BMK 750 28321-TAB rev F
- BMK 1000 28253-TAB rev F

Vista frontal

Vista trasera

Vista frontal

Vista trasera

AERCO International, Inc. Blauvelt, NY 10913

09/28/2017

(Página 3 de 6)
APÉNDICE F – LISTA DE PIEZAS DE BENCHMARK 750/1000

Quemador Benchmark 750/1000 – Ensamblado de válvula de aire-combustible
N/P 24276-TAB

Diagrama completo a continuación

Página 4 de 6
APÉNDICE F – LISTA DE PIEZAS DE BENCHMARK 750/1000
Tren de gas FM de Benchmark 750/1000 – N/P 22140-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95026</td>
<td>1.25"NPT 125#: BRIDA ROSCADA</td>
<td>16</td>
<td>1</td>
<td>92006-5</td>
<td>VÁLVULA: DE BOLA DE 1/8" NPT</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>92036</td>
<td>VÁLVULA: SSOV DE 1/8" NPT</td>
<td>23</td>
<td>1</td>
<td>61002-12</td>
<td>INTERRUPTOR DE PRESION ALTA DE GAS DE 4.7" W.C.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>25</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>27</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>61002-1</td>
<td>INTERRUPTOR DE PRESIÓN BAJA: CAÍDA DE 2.6" W.C. N.A.</td>
<td>29</td>
<td>1</td>
<td>97087-20</td>
<td>TUBO: PARA GAS, FLEXIBLE, DE 20" (50.8 cm) LG</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4" NPT: ACERO</td>
<td>30</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
</tbody>
</table>

Trenes de gas FM de Benchmark 750-1000

<table>
<thead>
<tr>
<th>22140-1 rev G</th>
<th>04/11/2017</th>
</tr>
</thead>
</table>

Guía de operación, mantenimiento y servicio de Benchmark 750-3000 Operation, Service & Maintenance Guide-Latin America

APÉNDICE F – LISTA DE PIEZAS DE BENCHMARK 750/1000

AERCO International, Inc. Blauvelt, NY 10913

Página 105 de 165

AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0122_0C

Tel 800-526-0288

GF-206-LA
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95026</td>
<td>1.25” NPT 125#: BRIDA ROSCADA</td>
<td>16</td>
<td>1</td>
<td>92006-5</td>
<td>VÁLVULA: DE BOLA DE 1/8” NPT</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>92036</td>
<td>VÁLVULA: SSOV DE 1/8” NPT</td>
<td>18</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: SSOV sin PDC INTERRUPTOR</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>19</td>
<td>1</td>
<td>61002-12</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 4.7” W.C.</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>21</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA: DE VENTILACIÓN DE 3/4” NPT</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>61002-1</td>
<td>INTERRUPTOR DE PRESIÓN BAJA: CAÍDA DE 2.6” W.C. N.A.</td>
<td>23</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUAD. PRESIÓN: 1/4”</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td>33</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT MKF</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
<td>36</td>
<td>1</td>
<td>97087-20</td>
<td>TUBO: PARA GAS, FLEXIBLE, DE 20” (50.8 cm) LG</td>
</tr>
</tbody>
</table>

Trenes de gas DBB de Benchmark 750/1000 – N/P 22140-2

Trenes de gas DBB de Benchmark 750/1000 – N/P 22140-2

AERCO International, Inc. Blauvelt, NY 10913

Trenes de gas DBB de Benchmark 750/1000

22140-2 rev E

Página 1 de 1
APÉNDICE F – LISTA DE PIEZAS DE BENCHMARK 750/1000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95026</td>
<td>BRIDA ROSCADA: 1.25" NPT 125#</td>
<td>24</td>
<td>1</td>
<td>92006-3</td>
<td>VÁLVULA: DE PUERTO COMPLETO, BOLA, 1/2" NPT, LATÓN</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>92103</td>
<td>VÁLVULA: SSOV DE 1/2" NPT</td>
<td>25</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>29</td>
<td>1</td>
<td>93474</td>
<td>ACOPLAMIENTO DE REDUCCIÓN 1 X 1/2"</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>93420</td>
<td>UNIÓN HEMBRA DE ½" NPT NÉG, HIERRO MALEABLE</td>
<td>31</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4" NPT: ACERO</td>
<td>32</td>
<td>1</td>
<td>97087-20</td>
<td>TUBO DE GAS FLEXIBLE DE 20"</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>33</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
</tbody>
</table>

Tren de gas de PROPANO de Benchmark 750/1000 – N/P 22140-3
Ensamblado de quemador, ventilador y válvula de aire-combustible de Benchmark 750/1000 –N/P 24276-TAB

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>42140</td>
<td>PLATO: QUEMADOR</td>
<td>12</td>
<td>3</td>
<td>53033</td>
<td>ARANDELA: TEMPORIZADOR</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>81143</td>
<td>EMPAQUE: QUEMADOR</td>
<td>13</td>
<td>1</td>
<td>46026</td>
<td>QUEMADOR: BMK 1.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>81064</td>
<td>EMPAQUE: VENTILADOR</td>
<td>15</td>
<td>1</td>
<td>Ver Tabla</td>
<td>ENSAMBLADO DE VÁLVULA AIRE-COMB</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24111</td>
<td>VENTILADOR: AMETEK 8.9"</td>
<td>17</td>
<td>1</td>
<td>61002-5</td>
<td>INTERRUPTOR DE ENTRADA BLOQUEADA -4.5 W.C.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>59104</td>
<td>PUERTO DE OBSERVACIÓN:</td>
<td>18</td>
<td>1</td>
<td>59171</td>
<td>REFLECTOR: MIRILLA</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>24277</td>
<td>ENSAMBLADO DE ENCENDIDO GRADUAL</td>
<td>19</td>
<td>1</td>
<td>61026</td>
<td>SENSOR DE OXÍGENO BAJO</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>66034</td>
<td>VARILLA DE FLAMA</td>
<td>20</td>
<td>1</td>
<td>61024</td>
<td>SENSOR DE TEMPERATURA DE ENTRADA DE AIRE</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>88004</td>
<td>JUNTA TÓRICA #2-244 BUNA-N</td>
<td>24</td>
<td>1</td>
<td>66026</td>
<td>DISPOSITIVO DE ENCENDIDO-INYECCION</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>81048</td>
<td>EMPAQUE: VARILLA DE FLAMA BAJO NOx</td>
<td>25</td>
<td>1</td>
<td>9-21</td>
<td>CONECTOR: HEX HD 1/8 NPT</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>60011-4</td>
<td>ENSAMBLADO INTERRUPTOR: COMPROBACIÓN DE VENTILADOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Cantidad</th>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>24276</td>
<td>1</td>
<td>24298</td>
<td>ENSAMBLADO DE VÁLVULA AIRE-COMB DE BMK 1000</td>
</tr>
<tr>
<td>24276-1</td>
<td>1</td>
<td>24298-1</td>
<td>ENSAMBLADO DE VÁLVULA AIRE-COMB DE BMK 750</td>
</tr>
<tr>
<td>24276-2</td>
<td>1</td>
<td>24298-2</td>
<td>ENSAMBLADO DE VÁLVULA AIRE-COMB DE BMK 750/1000 PROPANO</td>
</tr>
</tbody>
</table>

AERCO International, Inc.
Blauvelt, NY 10913

24276-TAB Rev K

08/15/2017

Página 1 de 1
Lista de piezas de Benchmark 1500/1500DF y Benchmark 2000/2000DF

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>39187</td>
<td>CONEXIÓN DE SALIDA DE GASES</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>81165</td>
<td>SELLO DE CONEXIÓN DE SALIDA DE GASES</td>
</tr>
<tr>
<td>3</td>
<td>9-22</td>
<td></td>
<td>TAPO EN TUBERÍA - CONEXIÓN DE SALIDA DE GASES</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>22188</td>
<td>TREN DE GAS ESTANDAR DE BMK 1500</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>22199</td>
<td>TRENES DE GAS DBB DE BMK 1500/2000 combustible dual</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>22198</td>
<td>TREN DE GAS DE BMK 1500/2000 combustible dual</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>22201</td>
<td>TREN DE GAS DE BMK 1500/2000 combustible dual</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>24378</td>
<td>ENSAMBLADO DE QUEMADOR BMK 1500 combustible dual</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>24378-1</td>
<td>ENSAMBLADO DE QUEMADOR BMK 2000 combustible dual</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>46042</td>
<td>QUEMADOR, BMK 1500</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>46044</td>
<td>QUEMADOR, BMK 2000</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>24277</td>
<td>ENSAMBLADO DE ENCENDIDO GRADUAL</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>43090</td>
<td>CÁMARA DE PLENO DE VÁLVULA</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>24311-3</td>
<td>KIT DE REPUESTO ENSEMBLADO DE VÁLVULA DE AIRE-COMBUSTIBLE, BMK 1500</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>24311-10</td>
<td>KIT DE REPUESTO ENSEMBLADO DE VÁLVULA DE AIRE-COMBUSTIBLE, BMK 2000</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>97087-72</td>
<td>TUBO FLEXIBLE DE GAS DE 72"</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>80089</td>
<td>AISLAMIENTO DEL ARMAZÓN</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>58038</td>
<td>KIT DE REPUESTO VENTILADOR</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>24356-1</td>
<td>KIT DE REPUESTO DE KIT DETECTOR DE FLAMA</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>61026</td>
<td>SENSOR DE OXÍGENO BAJO</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>58023</td>
<td>KIT DE REPUESTO DE DISPOSITIVO DE ENCENDIDO-INVYECTOR</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>59138</td>
<td>FILTRO DE AIRE, 6"</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>43095</td>
<td>CÁMARA DE SOBREPRESIÓN DEL VENTILADOR, BMK 1500-2000</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>123966</td>
<td>INTERRUPTOR: SOBRETEMPERATURA: AUTO RESET</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>123552</td>
<td>INTERRUPTOR: SOBRETEMPERATURA: MANUAL RESET</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>60011-4</td>
<td>INTERRUPTOR DE COMPROBACIÓN DEL VENTILADOR BMK 1500 y 3000</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>60011-2</td>
<td>INTERRUPTOR DE COMPROBACIÓN DEL VENTILADOR BMK 2000 y 3000</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>61002-5</td>
<td>INTERRUPTOR DE ENTRADA BLOQUEADA - 4.5 W.C.</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>69186-4</td>
<td>CONTROLADOR C-MORE</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>65085</td>
<td>TRANSFORMADOR DE ENCENDIDO</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>93230</td>
<td>AMORTIGUADOR - VÁLVULA DE AIRE-COMBUSTIBLE</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>64081</td>
<td>ECU, SENSOR DE O2</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>65011</td>
<td>TRANSFORMADOR 115V/240V 100VA</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>65109</td>
<td>FUENTE DE ALIMENTACIÓN DE 12V</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>69141</td>
<td>TOPE FINAL DE MONTAJE RIEL DIN</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>65120</td>
<td>BLOQUES DE TERMINALES: DIN MONTADO: NEGRO</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>65121</td>
<td>BLOQUES DE TERMINALES: DIN MONTADO: BLANCO</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>65122</td>
<td>BLOQUE DE CONEX A TIERRA DE TERMINAL: DIN MONTADO</td>
</tr>
</tbody>
</table>

NOTA: No se muestra en el dibujo
Kits de piezas de repuesto: BMK 1500 P/N 58088-TAB, BMK 2000 P/N 58087-TAB

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>123540</td>
<td>Válvula externa de bola de 2"</td>
</tr>
<tr>
<td>24441</td>
<td>Trampa de Condensado</td>
</tr>
<tr>
<td>Ver Tabla a continuación</td>
<td>Válvula liberadora de presión</td>
</tr>
<tr>
<td>Ver Tabla a continuación</td>
<td>Calibrador de presión/temperatura</td>
</tr>
</tbody>
</table>

Kit de piezas de repuesto de Benchmark 1500 N/P 58088-TAB

<table>
<thead>
<tr>
<th>Número de kit*</th>
<th>Descripción</th>
<th>Válvula liberadora de presión</th>
<th>Calibrador de presión/temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>58088-C30</td>
<td>KIT (CONBRACO) 30 PSI (207 kPa)</td>
<td>92023-1 123675-5</td>
<td>58087-1 30 PSI (207 kPa) 123620-W30 123675-5</td>
</tr>
<tr>
<td>58088-C50</td>
<td>KIT (CONBRACO) 50 PSI (345 kPa)</td>
<td>92023-2 123675-5</td>
<td>58087-2 50 PSI (345 kPa) 123620-W50 123675-5</td>
</tr>
<tr>
<td>58088-C60</td>
<td>KIT (CONBRACO) 60 PSI (414 kPa)</td>
<td>92023-3 123675-6</td>
<td>58087-3 75 PSI (517 kPa) 123620-W75 123675-6</td>
</tr>
<tr>
<td>58088-C75</td>
<td>KIT (CONBRACO) 75 PSI (517 kPa)</td>
<td>92023-4 123675-6</td>
<td>58087-4 100 PSI (689 kPa) 123620-W100 123675-6</td>
</tr>
<tr>
<td>58088-C100</td>
<td>KIT (CONBRACO) 100 PSI (689 kPa)</td>
<td>92023-5 123675-6</td>
<td>58087-5 150 PSI (1034 kPa) 123620-W150 123675-7</td>
</tr>
<tr>
<td>58088-C125</td>
<td>KIT (CONBRACO) 125 PSI (862 kPa)</td>
<td>92023-6 123675-6</td>
<td>58087-6 60 PSI (414 kPa) 123620-W60 123675-6</td>
</tr>
<tr>
<td>58088-C150</td>
<td>KIT (CONBRACO) 150 PSI (1034 kPa)</td>
<td>92023-7 123675-7</td>
<td>58087-7 125 PSI (862 kPa) 123620-W125 123675-6</td>
</tr>
<tr>
<td>58088-W30</td>
<td>KIT (WATTS) 30 PSI (207 kPa)</td>
<td>92023-8 123675-5</td>
<td>58087-8 160 PSI (1103 kPa) 123620-K160 123675-7</td>
</tr>
<tr>
<td>58088-W50</td>
<td>KIT (WATTS) 50 PSI (345 kPa)</td>
<td>92023-9 123675-5</td>
<td>58087-9 40 PSI (276 kPa) 92015-45 123675-5</td>
</tr>
<tr>
<td>58088-W60</td>
<td>KIT (WATTS) 60 PSI (414 kPa)</td>
<td>92023-10 123675-6</td>
<td></td>
</tr>
<tr>
<td>58088-W75</td>
<td>KIT (WATTS) 75 PSI (517 kPa)</td>
<td>92023-11 123675-6</td>
<td></td>
</tr>
<tr>
<td>58088-W100</td>
<td>KIT (WATTS) 100 PSI (689 kPa)</td>
<td>92023-12 123675-6</td>
<td></td>
</tr>
<tr>
<td>58088-W125</td>
<td>KIT (WATTS) 125 PSI (862 kPa)</td>
<td>92023-13 123675-6</td>
<td></td>
</tr>
<tr>
<td>58088-W150</td>
<td>KIT (WATTS) 150 PSI (1034 kPa)</td>
<td>92023-14 123675-7</td>
<td></td>
</tr>
<tr>
<td>58088-K160</td>
<td>KIT (KUNKLE) 160 PSI (1103 kPa)</td>
<td>92023-15 123675-7</td>
<td></td>
</tr>
</tbody>
</table>

* En unidades de combustible dual se añade "DF" al número de pieza (Por ejemplo, 58088-C30-DF)

Arnés de cableado (no se muestra en las siguientes figuras)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>63057</td>
<td>ARNÉS: ENERGÍA DE VENTILADOR</td>
</tr>
<tr>
<td>63058</td>
<td>ARNÉS: SEÑAL VENTILADOR</td>
</tr>
<tr>
<td>63083</td>
<td>ARNÉS: SENSOR DE O2</td>
</tr>
<tr>
<td>63090</td>
<td>ARNÉS DE CONTROL DE LÍMITE DE TEMPERATURA</td>
</tr>
<tr>
<td>63103</td>
<td>ARNÉS: ARMAZÓN</td>
</tr>
<tr>
<td>63104</td>
<td>ARNÉS: INTERCONEXIÓN I/O</td>
</tr>
<tr>
<td>63105</td>
<td>ARNÉS: SENSOR/COMUNICACIÓN I/O SENSOR</td>
</tr>
<tr>
<td>63111</td>
<td>ARNÉS: CONTROL</td>
</tr>
<tr>
<td>63134</td>
<td>CABLE DE CORRIENTE DE VENTILADOR DE SOLO COMBUSTIBLE DUAL</td>
</tr>
<tr>
<td>63150</td>
<td>ARNÉS: DETECTOR DE FLAMA</td>
</tr>
<tr>
<td>63156</td>
<td>CABLE DE CORRIENTE, VÁLVULA SECUENCIAL 24V</td>
</tr>
<tr>
<td>65104</td>
<td>CABLE DE ALTO VOLTAJE DE ENCENDIDO</td>
</tr>
</tbody>
</table>

Kits adicionales disponibles de Benchmark 1500/2000

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>27086-1</td>
<td>ACTUADOR: Kit de remplazo de interruptor de SSOV sin PDC</td>
</tr>
<tr>
<td>64048</td>
<td>Kit de remplazo de SSOV con regulador de presión</td>
</tr>
</tbody>
</table>

Otros aditamentos/piezas (opcional)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>92084-6</td>
<td>VÁLVULA DE ENCENDIDO SECUENCIAL MOTORIZADA</td>
</tr>
</tbody>
</table>
APÉNDICE G – LISTA DE PIEZAS DE BENCHMARK 1500/2000

Benchmark 1500/2000
Ensamblado de válvula de aire-combustible
N/P 24378, 24378-1 y 24378-2

Lista de piezas completa a continuación
4

Benchmark 1500/2000
Tren de gas estándar FM
N/P 22188

Ver Listas completas de piezas a continuación

4

Benchmark 1500/2000
Tren de gas de doble bloqueo y purga
N/P 22199

Ver Listas completas de piezas a continuación
Benchmark 1500DF/2000DF
Tren de gas COMBUSTIBLE DUAL
N/P 22198 consiste en:

- 22188-1 Tren de gas de GAS NATURAL
- 22197 Tren de PROPANO

Las listas completas de piezas de tren de gas aparecen a continuación
Benchmark 1500DF/2000DF
Tren de gas COMBUSTIBLE DUAL N/P 22201
consiste en:
- 22199-1 Tren de gas de GAS NATURAL
- 22200 Tren de PROPANO

Las listas completas de piezas de tren de gas aparecen a continuación.
APÉNDICE G – LISTA DE PIEZAS DE BENCHMARK 1500/2000

VISTA TRASERA

VISTA SUPERIOR

VISTA LATERAL IZQUIERDA

VISTA FRONTAL

Lista de piezas de Benchmark 1500/1500DF y Benchmark 2000/2000DF

Benchmark 1500 29313-TAB rev G
Benchmark 2000 29337-TAB rev G

10/02/2017

(Página 8 de 9)
APÉNDICE G – LISTA DE PIEZAS DE BENCHMARK 1500/2000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2" 125# 2"NPT</td>
<td>11</td>
<td>1</td>
<td>97087-20</td>
<td>MANGUERA FLEXIBLE, 20"</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>14</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.6" W.C.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>23</td>
<td>1</td>
<td>124150</td>
<td>VÁLVULA, SSOV DE 1/2" NPT</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
<td>26</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 1/4" NPT, ACERO</td>
<td>28</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA, DE BOLA, LATÓN, 1-1/2" NPT</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4"</td>
<td>29</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN DE 2" NPT 300#</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>61002-12</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 4.7" W.C.</td>
<td>29</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN DE 2" NPT 300#</td>
</tr>
</tbody>
</table>
APÉNDICE G – LISTA DE PIEZAS DE BENCHMARK 1500/2000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th>No. de pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th>No. de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2" 125# 2" NPT</td>
<td>27</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN DE 3/4" NPT #150</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>29</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA DE VENTILACIÓN DE 3/4" NPT</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>12951-2</td>
<td>RUBÍES REDUCTORES, CAJA DE CONTROL</td>
<td>33</td>
<td>2</td>
<td>95029</td>
<td>BRIDA DE SSOV DE 1/2" NPT</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>97087-20</td>
<td>TUBO FLEXIBLE DE 20"</td>
<td>34</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4"</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td>36</td>
<td>1</td>
<td>61002-12</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 4.7" W.C.</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA, DE BOLA, LATÓN, 1-1/2" NPT</td>
<td>37</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN DE 2" NPT 3000</td>
<td>39</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.6" W.C.</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA SSOV, DE DOBLE CUERPO, 2" NPT</td>
<td>42</td>
<td>3</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 1/4" NPT, ACERO</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR DE SSOV SIN INTERRUPTOR DPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tren de gas de GAS NATURAL de Benchmark 1500DF – 2000DF – N/P 22188-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cant.</th>
<th>No. de pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cant.</th>
<th>No. de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2" 125# 2" NPT</td>
<td>20</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>21</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA, DE BOLA, LATÓN, 1-1/2" NPT</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>22</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN DE 2" NPT 300#</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
<td>24</td>
<td>1</td>
<td>9-291</td>
<td>UNIÓN DE 1" NPT 300#BI</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 3/4" NPT, ACERO</td>
<td>29</td>
<td>2</td>
<td>60020</td>
<td>INTERRUPTOR DE PRESIÓN DE GAS 2-20" W.C.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4"</td>
<td>31</td>
<td>1</td>
<td>97087-20</td>
<td>MANGUERA FLEXIBLE, 20"</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>124150</td>
<td>VÁLVULA, SSOV DE 1/2" NPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrama:

![Diagrama del Tren de Gas de Benchmark 1500DF-2000DF](image)

Tren de Gas de Benchmark 1500DF-2000DF
GAS NATURAL
22188-1 rev C, componente de 22198
05/05/2015

AERCO International, Inc. Blauvelt, NY 10913

Página 120 de 165

AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0132_A

Tel: 800-526-0288

GF-206-LA-LA
Tren de gas de PROPANO de Benchmark 1500DF – 2000DF – N/P 22197

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cant.</th>
<th>No. de pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cant.</th>
<th>No. de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>92036</td>
<td>VÁLVULA DE SSOV DE 1” NPT</td>
<td>11</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4”</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>15</td>
<td>1</td>
<td>9-291</td>
<td>UNIÓN DE 1” NPT 300WBI</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>19</td>
<td>1</td>
<td>93466</td>
<td>TAPA DE 1” NPT HIERRO MALEABLE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 1/4” NPT, ACERO</td>
<td>21</td>
<td>2</td>
<td>60020</td>
<td>INTERRUPTOR DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT MXF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrama de la instalación de gas de PROPANO

AERCO International, Inc. Blauvelt, NY 10913

Tren de gas de PROPANO de Benchmark 1500DF-2000DF

22197 rev D, componente de 22198

09/17/2015

Página 1 de 1
APÉNDICE G – LISTA DE PIEZAS DE BENCHMARK 1500/2000

Tren de gas DBB de GAS NATURAL de Benchmark 1500DF – 2000DF – N/P 22199-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th>No. de pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th>No. de pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2” NPT</td>
<td>24</td>
<td>1</td>
<td>9-291</td>
<td>UNIÓN DE 1” NPT 300#BI</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>25</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA SSOV, DE DOBLE CUERPO, 2” NPT</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>26</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR DE SSOV SIN DPC INTERRUPTOR</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT MXF</td>
<td>27</td>
<td>2</td>
<td>95029</td>
<td>BRIDA DE SSOV DE 1/2” NPT</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 1/4” NPT, ACERO</td>
<td>33</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN DE 3/4” NPT #150</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4”</td>
<td>41</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA DE VENTILACIÓN DE 3/4” NPT</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td>44</td>
<td>2</td>
<td>60020</td>
<td>INTERRUPTOR DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA, DE BOLA, LATÓN, 1-1/2” NPT</td>
<td>49</td>
<td>1</td>
<td>97087-20</td>
<td>TUBO FLEXIBLE DE 20”</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN DE 2” NPT 300#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagrama del tren de gas DBB de Benchmark 1500DF – 2000DF](image)
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR, SSOV CON REGULADOR</td>
<td>17</td>
<td>2</td>
<td>92036</td>
<td>VALVULA DE SSOV DE 1" NPT1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>20</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR DE SSOV SIN DPC INTERRUPTOR</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA, 1/4" NPT, ACERO</td>
<td>27</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN DE 3/4" NPT #350</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>92077</td>
<td>VALVULA DE BOLA DE LATÓN 1/4" NPT MFX</td>
<td>28</td>
<td>1</td>
<td>93466</td>
<td>TAPA DE 1" NPT HIERRO MALEABLE</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR DE PRESIÓN DE 1/4"</td>
<td>29</td>
<td>1</td>
<td>122774</td>
<td>VALVULA DE VENTILACIÓN DE 3/4" NPT</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>9-291</td>
<td>UNIÓN DE 1" NPT 300#BI</td>
<td>31</td>
<td>2</td>
<td>60020</td>
<td>INTERRUPTOR DE PRESIÓN DE GAS DE 2-20" W.C.</td>
</tr>
</tbody>
</table>

Tren de gas DDB de PROPANO de Benchmark 1500DF – 2000DF – N/P 22200

Tren de gas DDB de PROPANO de Benchmark 1500DF-2000DF

22200 rev E, componente de 22201

AERCO International, Inc. Blauvelt, NY 10913

10/16/2015
Ensamblado de quemador de Benchmark 1500/2000 N/P 24378-TAB

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>69078</td>
<td>VENTILADOR: AMETEK 12.3"</td>
<td>19</td>
<td>1</td>
<td>81166</td>
<td>EMPAQUE DEL QUEMADOR</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>43090</td>
<td>CÁMARA DE PLÉNO DE VÁLVULA</td>
<td>20</td>
<td>1</td>
<td>66026</td>
<td>DISPOSITIVO DE ENCENDIDO-INYECTOR</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Ver Tabla</td>
<td>ENSAMBLADO VÁLVULA DE AIRE COMBUSTIBLE</td>
<td>21</td>
<td>1</td>
<td>61026</td>
<td>SENSOR DE OXÍGENO BAJO</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Ver Tabla</td>
<td>QUEMADOR</td>
<td>22</td>
<td>1</td>
<td>81048</td>
<td>EMPAQUE: VARILLA DE FLAMA BAJO NOx</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>81057</td>
<td>EMPAQUE: VENTILADOR</td>
<td>23</td>
<td>1</td>
<td>66034</td>
<td>VARILLA DE FLAMA</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>43095</td>
<td>CÁMARA DE SOBREPRESIÓN DEL VENTILADOR</td>
<td>24</td>
<td>1</td>
<td>59104</td>
<td>PUERTO DE OBSERVACIÓN:</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>59138</td>
<td>FILTRO: AIRE 6"</td>
<td>25</td>
<td>1</td>
<td>81183</td>
<td>EMPAQUE DEL QUEMADOR: SUPERIOR LIBERADOR</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>9-21</td>
<td>CONECTOR: HEX HD 1/8 NPT</td>
<td>26</td>
<td>1</td>
<td>24277</td>
<td>ENSAMBLADO DE ENCENDIDO GRADUAL</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Ver Tabla</td>
<td>SENSOR DE TEMPERATURA DE ENTRADA DE AIRE</td>
<td>27</td>
<td>1</td>
<td>81184</td>
<td>EMPAQUE: VENTILADOR</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Ver Tabla</td>
<td>ENSAMBLADO DE INTERRUPTOR DE COMPROBACIÓN DE VENTILADOR</td>
<td>32</td>
<td>1</td>
<td>81186</td>
<td>EMPAQUE DEL QUEMADOR: INFERIOR LIBERADOR</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>61002-5</td>
<td>INTERRUPTOR DE ENTRADA BLOQUEADA -4.5 W.C.</td>
<td>35</td>
<td>1</td>
<td>53033</td>
<td>ARANDELA: TEMPORIZADOR</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>81100</td>
<td>EMPAQUE: VENTILADOR 12.3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Piezas ensamblado quemador

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo 3</th>
<th>Artículo 4</th>
<th>Artículo 12</th>
<th>Artículo 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>24378</td>
<td>BMK 1500</td>
<td>24220-3</td>
<td>46042</td>
<td>61024</td>
<td>60011-4</td>
</tr>
<tr>
<td>24378-1</td>
<td>BMK 2000</td>
<td>24220-10</td>
<td>46044</td>
<td>61024</td>
<td>60011-2</td>
</tr>
<tr>
<td>24378-2</td>
<td>BMK 2000 DF</td>
<td>24220-3</td>
<td>46044</td>
<td>61024</td>
<td>60011-2</td>
</tr>
</tbody>
</table>
Lista de piezas de Benchmark 2500/2500 DF y Benchmark 3000/3000 DF

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>39156</td>
<td>CONEXIÓN: SALIDA DE GASES</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>84040</td>
<td>SELLO: CONEXIÓN:</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>92-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>22190</td>
<td>ENSAMBLADO DE TREN DE GAS</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>22211</td>
<td>TREN DE GAS DE BMK 2500: DDB</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>22212</td>
<td>TREN DE GAS DE BMK 2500: Combustible dual</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>22209</td>
<td>TREN DE GAS DE BMK 2500: DDB</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>22171</td>
<td>TREN DE GAS FM DE BMK 3000</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>22173</td>
<td>TREN DE GAS DE BMK 3000: DDB</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>22174</td>
<td>TREN DE GAS DE BMK 3000: Combustible dual</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>22283</td>
<td>TREN DE GAS DE BMK 3000: Combustible dual</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>26015-1</td>
<td>ENSAMBLADO DE QUEMADOR BMK 2500 460 VAC</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>26015-2</td>
<td>ENSAMBLADO DE QUEMADOR BMK 2500 208-230 VAC</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>26014-1</td>
<td>ENSAMBLADO DE QUEMADOR BMK 3000 460 VAC</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>26014-2</td>
<td>ENSAMBLADO DE QUEMADOR BMK 3000 208-230 VAC</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>46038</td>
<td>QUEMADOR BMK 2500</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>46039</td>
<td>QUEMADOR BMK 2500</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>24311-1</td>
<td>Kit de reemplazo VÁLVULA DE AIRE COMBUSTIBLE, BMK 3000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>24311-7</td>
<td>Kit de reemplazo VÁLVULA DE AIRE COMBUSTIBLE, BMK 3000 DF</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>24311-8</td>
<td>Kit de reemplazo VÁLVULA DE AIRE COMBUSTIBLE, BMK 3000 DF</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>24311-9</td>
<td>Kit de reemplazo VÁLVULA DE AIRE COMBUSTIBLE, BMK 3000 DF</td>
</tr>
</tbody>
</table>

Mangueras y Aislantes

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>97087-72</td>
<td>TUBO FLEXIBLE 72” LG</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>80081</td>
<td>AISLAMIENTO DEL ARMAZÓN</td>
</tr>
</tbody>
</table>

Ventilador

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1</td>
<td>58063-1</td>
<td>Kit de reemplazo VENTILADOR 460V</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>58063-2</td>
<td>Kit de reemplazo VENTILADOR 208-230V</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>61026</td>
<td>SENSOR DE OXÍGENO BAJO</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>24356-1</td>
<td>Kit de reemplazo de DETECTOR DE FLAMA</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>58023</td>
<td>Kit de reemplazo de DISPOSITIVO DE ENCENDIDO-INJECTOR</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>88014</td>
<td>FILTRO DE AIRE</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>43091</td>
<td>CÁMARA DE SOBREPRESIÓN DEL VENTILADOR</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>233956</td>
<td>INTERRUPTOR AUTOCONEJO DE LÍMITE DE TEMPERATURA</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>233552</td>
<td>INTERRUPTOR MANUAL DE RESET POR SOBRETEMPERATURA</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>60011-2</td>
<td>INTERRUPTOR DE COMPROBACIÓN DEL VENTILADOR BMK 300 y 3000</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>60011-5</td>
<td>INTERRUPTOR DE COMPROBACIÓN DEL VENTILADOR BMK 2500 y 3000</td>
</tr>
</tbody>
</table>

Otros Aditamentos/Pieza

<table>
<thead>
<tr>
<th># Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>38035</td>
<td>CUBIERTA DE PANEL I/O</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>69126</td>
<td>ENSAMBLADO DE CAPACITOR/INTERCEPTOR DE CORTO DE BAJO NIVEL DE AGUA</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>123863</td>
<td>VÁLVULA DE BOLA DE 1/8” NPT</td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>82094</td>
<td>VÁLVULA DE DRENAJE 3/4”</td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>59178</td>
<td>VENTILACIÓN DE AIRE 1/8”</td>
</tr>
</tbody>
</table>

No se muestra en el dibujo

Solo se usa en unidades de 460 v
Kit de piezas de repuesto de Benchmark 2500/1000 N/P 58048-TAB

<table>
<thead>
<tr>
<th>Número de kit*</th>
<th>Descripción</th>
<th>Kit de válvula liberadora de presión</th>
<th>Calibrador de presión/temperatura</th>
<th>ENSAMBLADO de trampa de condensado</th>
<th>Válvula de bola de 2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>58048-C30</td>
<td>KIT (CONBRACO) 30 PSI (207 kPa)</td>
<td>92016-1</td>
<td>123675-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C50</td>
<td>KIT (CONBRACO) 50 PSI (345 kPa)</td>
<td>92016-2</td>
<td>123675-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C60</td>
<td>KIT (CONBRACO) 60 PSI (414 kPa)</td>
<td>92016-3</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C75</td>
<td>KIT (CONBRACO) 75 PSI (517 kPa)</td>
<td>92016-4</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C100</td>
<td>KIT (CONBRACO) 100 PSI (689 kPa)</td>
<td>92016-5</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C125</td>
<td>KIT (CONBRACO) 125 PSI (862 kPa)</td>
<td>92016-6</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-C150</td>
<td>KIT (CONBRACO) 150 PSI (1034 kPa)</td>
<td>92016-7</td>
<td>123675-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W50</td>
<td>KIT (WATTS) 50 PSI (345 kPa)</td>
<td>92016-8</td>
<td>123675-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W60</td>
<td>KIT (WATTS) 60 PSI (414 kPa)</td>
<td>92016-9</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W75</td>
<td>KIT (WATTS) 75 PSI (517 kPa)</td>
<td>92016-10</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W100</td>
<td>KIT (WATTS) 100 PSI (689 kPa)</td>
<td>92016-11</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W125</td>
<td>KIT (WATTS) 125 PSI (862 kPa)</td>
<td>92016-12</td>
<td>123675-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-W150</td>
<td>KIT (WATTS) 150 PSI (1034 kPa)</td>
<td>92016-13</td>
<td>123675-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58048-K160</td>
<td>KIT (KUNKLE) 160 PSI (1103 kPa)</td>
<td>92016-14</td>
<td>123675-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* En unidades de combustible dual se añade "DF" al número de pieza (Por ejemplo, 58048-C30-DF)

Otros aditamentos/piezas (opcional)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>92084-6</td>
<td>VÁLVULA DE ENCENDIDO SECUENCIAL MOTORIZADA</td>
</tr>
</tbody>
</table>

Arnés de cableado (no se muestra en las siguientes figuras)

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>63004</td>
<td>ARNÉS: TRANSFORMADOR 460V – 460 V únicamente</td>
</tr>
<tr>
<td>63059</td>
<td>ARNÉS: REACTOR DE CONVERTIDOR BMK 3.0</td>
</tr>
<tr>
<td>63083</td>
<td>ARNÉS: SENSOR DE O2</td>
</tr>
<tr>
<td>63090</td>
<td>ARNÉS: CONTROL DE LÍMITE DE TEMPERATURA</td>
</tr>
<tr>
<td>63103</td>
<td>ARNÉS: ARMAZÓN</td>
</tr>
<tr>
<td>63104</td>
<td>ARNÉS: INTERCONEXIÓN I/O</td>
</tr>
<tr>
<td>63105</td>
<td>ARNÉS: SENSOR/COMUNICACIÓN I/O SENSOR</td>
</tr>
<tr>
<td>63109</td>
<td>ARNÉS: TREN DE GAS</td>
</tr>
<tr>
<td>63111</td>
<td>ARNÉS: CONTROL</td>
</tr>
<tr>
<td>63134</td>
<td>CABLE DE CORRIENTE DE VENTILADOR - SOLO COMBUSTIBLE DUAL</td>
</tr>
<tr>
<td>65104</td>
<td>CABLE DE ALTO VOLTAGE DE ENCENDIDO</td>
</tr>
</tbody>
</table>

Kits disponibles de Benchmark 2500/3000

<table>
<thead>
<tr>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>27086-1</td>
<td>ACTUADOR: Kit de remplazo de INTERRUPTOR DE SSOV sin PDC</td>
</tr>
<tr>
<td>64048</td>
<td>Kit de remplazo de SSOV CON REGULADOR DE PRESIÓN</td>
</tr>
</tbody>
</table>
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

Benchmark 2500/3000
Quemador - Ensamblado de válvula de aire-combustible
N/P 26015-TAB y 26014-TAB

Lista de piezas completa a continuación
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

Benchmark 3000
Tren de gas estándar FM
N/P 22171
Ver diagrama completo a continuación

Benchmark 3000
Tren de gas de doble bloqueo y purga
N/P 22173
Ver diagrama completo a continuación

Benchmark 2500
Tren de gas estándar FM
N/P 22190
Ver diagrama completo a continuación

Benchmark 2500
Tren de gas de doble bloqueo y purga
N/P 22211
Ver diagrama completo a continuación
Guía de operación, mantenimiento y servicio de Benchmark 750-3000

Apéndice H – Lista de piezas de Benchmark 2500/3000

Benchmark 3000 Combustible dual

Tren de gas FM
N/P 22174
Ver diagrama completo a continuación

Benchmark 3000 Combustible dual

Tren de gas de doble bloqueo y purga
N/P 22183
Ver diagrama completo a continuación

AERCO International, Inc.
Blauvelt, NY 10913

10/09/2017

Lista de piezas de Benchmark 2500/2500DF y Benchmark 3000/3000DF

<table>
<thead>
<tr>
<th>Benchmark 2500 28536-TAB rev E</th>
<th>Benchmark 3000 28382-TAB rev F</th>
<th>10/09/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Página 6 de 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

Benchmark 2500 Combustible dual
Tren de gas FM
N/P 22210
Ver diagrama completo a continuación

Benchmark 2500 Combustible dual
Tren de gas de doble bloqueo y purga
N/P 22209
Ver diagrama completo a continuación
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

VISTA TRASERA

VISTA LATERAL IZQUIERDA

VISTA PARTE SUPERIOR

VISTA FRONTAL

AERCO International, Inc. Blauvelt, NY 10913

Lista de piezas de Benchmark 2500/2500DF y Benchmark 3000/3000DF

Benchmark 2500 28536-TAB rev E
Benchmark 3000 28382-TAB rev F

10/09/2017

Página 8 de 9
Tren de gas FM de Benchmark 3000 – N/P 22171

<table>
<thead>
<tr>
<th>Articulo</th>
<th>Cant.</th>
<th>N/P</th>
<th>Descripción</th>
<th>Articulo</th>
<th>Cant.</th>
<th>N/P</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2” NPT</td>
<td>26</td>
<td>1</td>
<td>60020</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20’ W.C.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>123540</td>
<td>VÁLVULA: DE BOLA DE 2” DE PUERTO COMPLETO</td>
<td>27</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td>29</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4”</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>31</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 1-20” W.C.</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>32</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 1/4”: WATTS</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>124136</td>
<td>VÁLVULA: SSOV DE 2/8” NPT</td>
<td>33</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>97087-12</td>
<td>TUBO FLEXIBLE DE GAS DE 12”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagrama de Tren de gas FM de Benchmark 3000 – N/P 22171](image-url)
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2" 125# 2"NPT</td>
<td>23</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>123540</td>
<td>VÁLVULA: DE BOLA DE 2" DE PUERTO COMPLETO</td>
<td>27</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 2" NPT</td>
<td>31</td>
<td>1</td>
<td>97087-16</td>
<td>TUBERÍA: DE GAS FLEXIBLE DE 12"</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>35</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 1/4": WATTS</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
<td>36</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2" NPT 300#</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td>37</td>
<td>1</td>
<td>60020</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20" W.C.</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>123769</td>
<td>VÁLVULA: SOLENOIDE NA 1" NPT</td>
<td>38</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN: DE 3/4" NPT #150</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>39</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20" W.C.</td>
</tr>
</tbody>
</table>

Tren de gas DBB de Benchmark 3000 – N/P 22173

Tren de gas DBB de GAS NATURAL de Benchmark 3000 – N/P 22173 rev K

AERCO International, Inc.
Blauvelt, NY 10913

01/04/2017

Página 1 de 1
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2”NPT</td>
<td>25</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MXF</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA: DE BOLA, LATÓN, 1-1/2” NPT</td>
<td>26</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>124150</td>
<td>VÁLVULA: SSOV DE 1-1/2” NPT</td>
<td>28</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>29</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4”</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td>32</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>97087-12</td>
<td>TUBO FLEXIBLE 12”</td>
<td>33</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.0” W.C.</td>
<td>34</td>
<td>1</td>
<td>61002-22</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 3.0” W.C.</td>
</tr>
</tbody>
</table>

Diagram of the gas FM de Benchmark 2500 – N/P 22190

Trenes de gas FM de Benchmark 2500

22190 – rev D

07/21/2016

Página 1 de 1

AERCO International, Inc.
Blauvelt, NY 10913

Página 136 de 165

AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0132_A
Tel: 800-526-0288

GF-206-LA-LA
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

Tren de gas DBB de Gas Natural de Benchmark 2500 – N/P 22211

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2”NPT</td>
<td>26</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4”</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA: DE BOLA, LATÓN, 1-1/2” NPT</td>
<td>29</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>30</td>
<td>1</td>
<td>124137</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 1-1/2” NPT</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td>31</td>
<td>2</td>
<td>95029</td>
<td>BRIDA: SSOV DE 11/2” NPT</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>97087-12</td>
<td>TUBO FLEXIBLE DE GAS DE 12”</td>
<td>32</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.6” W.C.</td>
<td>33</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA: DE VENTILACIÓN DE 3/4” NPT</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT MXF</td>
<td>40</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN: DE 3/4” NPT #150</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
<td>41</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>42</td>
<td>1</td>
<td>61002-22</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS: 3.0” W.C.</td>
</tr>
</tbody>
</table>

Dibujo de los componentes

AERCO International, Inc.
Blauvelt, NY 10913

<table>
<thead>
<tr>
<th>AERCO International, Inc.</th>
<th>Tren de gas DBB de Gas Natural de Benchmark 2500</th>
<th>07/22/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22211 rev E</td>
<td>Página 1 de 1</td>
</tr>
</tbody>
</table>

Página 137 de 165
AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0122_0C
11/29/2017
Tel: 800-526-0288
GF-206-LA
Tren de gas de Benchmark 3000 DF – GAS NATURAL – N/P 22177

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 2” NPT</td>
<td>16</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2”NPT</td>
<td>20</td>
<td>1</td>
<td>123540</td>
<td>VÁLVULA: DE BOLA DE 2” DE PUERTO COMPLETO</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>21</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>22</td>
<td>2</td>
<td>95030</td>
<td>BRIDA: SSOV DE 2/8” NPT</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4”</td>
<td>25</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
<td>26</td>
<td>1</td>
<td>60020</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
<td>27</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 1/4”: WATTS</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tren de gas de Benchmark 3000DF – GAS NATURAL

22177 rev F, componente de 22174

AERCO International, Inc.
Blauvelt, NY 10913

Página 138 de 165
AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0132_A
01/02/2018
Tel: 800-526-0288
GF-206-LA-LA
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 2" NPT</td>
<td>13</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>17</td>
<td>2</td>
<td>95030</td>
<td>BRIDA: SSOV DE 2/8" NPT</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
<td>23</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20" W.C.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
<td>25</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 1/4": WATTS</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td></td>
<td></td>
<td>1</td>
<td>MANGUERA FLEXIBLE DE 12"</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tren de gas de PROPANO de Benchmark 3000 – N/P 22178

AERCO International, Inc.
Blauvelt, NY 10913

Tren de gas de Benchmark 3000 DF – PROPANO

22178 rev F, componente de 22174

01/03/2017

Página 1 de 1
Tren de gas DBB de Benchmark 3000DF – N/P 22177-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 2” NPT</td>
<td>15</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>123540</td>
<td>VÁLVULA: DE BOLA DE 2” DE PUERTO COMPLETO</td>
<td>19</td>
<td>1</td>
<td>123769</td>
<td>VÁLVULA DE SOLENOIDE NA 1” NPT</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2”NPT</td>
<td>23</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td>25</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4”</td>
<td>29</td>
<td>2</td>
<td>95030</td>
<td>BRIDA: SSOV DE 2/8” NPT</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
<td>32</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
<td>33</td>
<td>1</td>
<td>60020</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20” W.C.</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td>34</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 1/4”: WATTS</td>
</tr>
</tbody>
</table>

![Diagrama de tren de gas DBB de Benchmark 3000DF – GAS NATURAL](attachment:diagram.jpg)
Tren de gas DBB de PROPANO de Benchmark 3000DF – N/P 22178-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>124142</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 2" NPT</td>
<td>16</td>
<td>2</td>
<td>95030</td>
<td>BRIDA: SSOV DE 2/8" NPT</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>22</td>
<td>2</td>
<td>92143</td>
<td>VÁLVULA DE BOLA DE 3/4": WATTS</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
<td>24</td>
<td>1</td>
<td>60032</td>
<td>INTERRUPTOR: DE PRESIÓN DE GAS DE 2-20" W.C.</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
<td>29</td>
<td>1</td>
<td>123769</td>
<td>VÁLVULA: SOLENOIDE NA 1" NPT</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td>32</td>
<td>1</td>
<td>123771</td>
<td>UNIÓN: MA x HEM 1" NPT: 150# Hierro Maleable</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td>*</td>
<td>1</td>
<td>97005-5</td>
<td>Manguera Flexible de 18"</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tren de gas FM de combustible dual de Benchmark 2500, Gas Natural – N/P 22210-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2” 125# 2” NPT</td>
<td>24</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA: DE BOLA, LATÓN, 1-1/2” NPT</td>
<td>25</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>124150</td>
<td>VÁLVULA: SSOV DE 1-1/2” NPT</td>
<td>27</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>29</td>
<td>1</td>
<td>93310</td>
<td>UNIÓN DE HIERR NEGRA 1-1/2" 150#</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2” NPT</td>
<td>30</td>
<td>2</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>97087-12</td>
<td>TUBERÍA: DE GAS FLEXIBLE DE 12”</td>
<td>32</td>
<td>1</td>
<td>61002-15</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 7.0” W.C.</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>61002-21</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 7.5” W.C.</td>
<td>33</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2” NPT 300#</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4” NPT MXF</td>
<td>34</td>
<td>1</td>
<td>61002-22</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE 3.0</td>
</tr>
</tbody>
</table>

![Diagrama de Tren de gas FM de Benchmark 2500, Gas Natural – N/P 22210-1](image-url)
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th>N/P</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th>N/P</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>124150</td>
<td>VÁLVULA: SSOV DE 1-1/2" NPT</td>
<td>18</td>
<td>1</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4" NPT: ACERO</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>19</td>
<td>2</td>
<td>12951-2</td>
<td>BUJES REDUCTORES: CAJA DE CONTROL</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td>21</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.6" W.C.</td>
<td>23</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2" NPT 300#</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tren de gas FM de Benchmark 2500 DF – Propano – N/P 22210-2

![Diagrama de la lista de piezas](image.png)
Tren de gas DBB de Benchmark 2500 DF – NATURAL GAS – N/P 22209-1

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123542</td>
<td>BRIDA 2" 125# 2"NPT</td>
<td>28</td>
<td>2</td>
<td>95029</td>
<td>BRIDA: SSOV DE 11/2" NPT</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>92006-7</td>
<td>VÁLVULA: DE BOLA, LATÓN, 1-1/2" NPT</td>
<td>29</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>30</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA: DE VENTILACIÓN DE 3/4" NPT</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td>35</td>
<td>1</td>
<td>124094</td>
<td>UNIÓN: DE 3/4" NPT #150</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>97087-12</td>
<td>TUBERÍA DE GAS FLEXIBLE DE 12"</td>
<td>36</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2" NPT 300#</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>61002-21</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 7.5" W.C.</td>
<td>39</td>
<td>1</td>
<td>93310</td>
<td>UNIÓN DE HIERRO NEGRA 1-1/2" 150#</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4" NPT: ACERO</td>
<td>41</td>
<td>2</td>
<td>99017</td>
<td>AMORTIGUADOR: PRESIÓN: 1/4"</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
<td>42</td>
<td>1</td>
<td>61002-15</td>
<td>INTERRUPTOR DE PRESIÓN ALTA DE GAS DE 7.0" W.C.</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
<td>43</td>
<td>1</td>
<td>61002-22</td>
<td>INTERRUPTOR, ALTO 3.0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>124137</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 1-1/2" NPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrama

![Diagrama de Tren de gas DBB de Benchmark 2500 DF - GAS NATURAL]

AERCO International, Inc.
Blauvelt, NY 10913

Tren de gas DDB de Benchmark 2500DF – GAS NATURAL
22209-1 rev B, componente de 22209
02/19/2016

Página 144 de 165
AERCO International, Inc. • 100 Oritani Dr. • Blauvelt, NY 10913 OMM-0132_A
01/02/2018
Tel: 800-526-0288
GF-206-LA-LA
APÉNDICE H – LISTA DE PIEZAS DE BENCHMARK 2500/3000

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>64048</td>
<td>ACTUADOR: SSOV CON REGULADOR</td>
<td>19</td>
<td>1</td>
<td>99015</td>
<td>ORIFICIO DE AMORTIGUACIÓN SSOV</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>93382</td>
<td>TAPA 2" NPT</td>
<td>20</td>
<td>1</td>
<td>9-294</td>
<td>UNIÓN: 2" NPT 300#</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>61002-11</td>
<td>INTERRUPTOR DE PRESIÓN BAJA DE GAS DE 3.6" W.C.</td>
<td>22</td>
<td>1</td>
<td>124137</td>
<td>VÁLVULA: SSOV: CUERPO DOBLE: 1-1/2" NPT</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>92077</td>
<td>VÁLVULA DE BOLA DE LATÓN 1/4" NPT MXF</td>
<td>23</td>
<td>1</td>
<td>27086-1</td>
<td>ACTUADOR: INTERRUPTOR DE SSOV SIN PDC</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4" NPT: ACERO</td>
<td>24</td>
<td>2</td>
<td>95029</td>
<td>BRIDA: SSOV DE 11/2" NPT</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>12951-2</td>
<td>BUJES REDUCTORES, CAJA DE CONTROL</td>
<td>25</td>
<td>1</td>
<td>122774</td>
<td>VÁLVULA DE VENTILACIÓN DE 3/4" NPT</td>
</tr>
</tbody>
</table>

Tren de gas DBB de Benchmark 2500 DF – PROPANO – N/P 22209-2

AERCO International, Inc.
Blauvelt, NY 10913

22209-2 rev C, componente de 22209

Página 1 de 1

AERCO International, Inc.
100 Oritani Dr. • Blauvelt, NY 10913 OMM-0122_0C
Tel: 800-526-0288

GF-206-LA
Ensamblado de quemador: BMK 2500 N/P 26015-TAB, BMK 3000 N/P 26014-TAB

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Cantidad</th>
<th># Pieza</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>43091</td>
<td>CÁMARA DE SOBREPRESIÓN DEL VENTILADOR (MECANIZADO)</td>
<td>13</td>
<td>1</td>
<td>60011-5</td>
<td>INTERRUPTOR DE COMPROBACIÓN DE VENTILADOR DE BMK 2500</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Ver Tabla</td>
<td>Kit de remplazo VENTILADOR TRIFÁSICO</td>
<td>14</td>
<td>1</td>
<td>61002-5</td>
<td>INTERRUPTOR DE ENTRADA BLOQUEADA -4.5 W.C.</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>43090</td>
<td>CÁMARA DE PLENO DE VÁLVULA</td>
<td>15</td>
<td>2</td>
<td>9-22</td>
<td>TAPÓN DE TUBERÍA: 1/4” NPT: ACERO</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>46039</td>
<td>QUEMADOR: BMK 2500</td>
<td>17</td>
<td>1</td>
<td>81057</td>
<td>EMPAQUE: VENTILADOR</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Ver Tabla</td>
<td>Kit de remplazo ENSAMBLADO DE VÁLVULA DE AIRE-COMBUSTIBLE</td>
<td>19</td>
<td>1</td>
<td>81157</td>
<td>EMPAQUE DE VENTILADOR</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>59104</td>
<td>PUERTO DE OBSERVACIÓN:</td>
<td>25</td>
<td>1</td>
<td>61024</td>
<td>SENSOR DE TEMPERATURA DE ENTRADA DE AIRE</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>61026</td>
<td>SENSOR DE OXÍGENO BAJO</td>
<td>27</td>
<td>1</td>
<td>88015</td>
<td>JUSTA TÓRICA DE 3/16 x 7”</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>66034</td>
<td>VARILLA DE FLAMA</td>
<td>31</td>
<td>1</td>
<td>93230</td>
<td>AMORTIGUADOR</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>66026</td>
<td>DISPOSITIVO DE ENCENDIDO-INYECTOR</td>
<td>32</td>
<td>1</td>
<td>81180</td>
<td>EMPAQUE: QUEMADOR</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>81048</td>
<td>EMPAQUE: VARILLA DE FLAMA DE BAJO NOx</td>
<td>33</td>
<td>1</td>
<td>81173</td>
<td>EMPAQUE LIBERADOR</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>24277</td>
<td>ENSAMBLADO DE ENCENDIDO GRADUAL</td>
<td>34</td>
<td>1</td>
<td>81185</td>
<td>EMPAQUE LIBERADOR: INFERIOR</td>
</tr>
</tbody>
</table>

Descripción de Ensamblado

<table>
<thead>
<tr>
<th>Artículo 2</th>
<th>Artículo 5 BMK 2500</th>
<th>Artículo 5 BMK 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>58063-3</td>
<td>24311-8</td>
<td>24311-1</td>
</tr>
<tr>
<td>58063-2</td>
<td>24311-8</td>
<td>24311-1</td>
</tr>
<tr>
<td>58063-1</td>
<td>24311-9</td>
<td>24311-7</td>
</tr>
<tr>
<td>58063-3</td>
<td>24311-9</td>
<td>24311-7</td>
</tr>
</tbody>
</table>

AERCO International, Inc.

Blauvelt, NY 10913

Ensamblado de quemador de Benchmark 2500 - 3000

BMK 2500 – 26015-TAB rev E

BMK 3000 – 26014-TAB rev K

08/10/2017

Página 1 de 1
CONEXIONES DE CAJA DE CONTROL

CONECTOR DE 24 PINES - P2

ENTRADA SENSOR DE AIRE EXTERIOR
ENTRADA COMÚN DE SENSOR
ENTRADA SENSOR DE FLUJO
EXCITACIÓN DEL SENSOR (12VDC)
ENTRADA ANALÓGICA
ENTRADA BMS (PWM)

CONECTOR DE 16 PINES – P6

ENTRADA SENSOR AUXILIAR DE AIRE
CABLE BLINDADO
SALIDA ANALÓGICA
CONEXIÓN A TIERRA
ENTRADA RS-485

Ver hoja 1 de 2

Estos diagramas y/o especificaciones son propiedad de AERCO International, Inc. Se proporcionan en estricta confidencialidad y no deberán ser reproducidos, copiados o usados para ser la base de la manufactura o venta de dispositivos sin el permiso de su propietario.
CONEXIONES DE CAJA DE CONTROL

CONECTOR DE 24 PINES - P2

CONECTOR DE 16 PINES - P6

CAJA DE ENTRADA/SALIDA

DIAGRAMA DE CABLEADO

BENCHMARK 1500/2000 – NÚMERO DE DIAGRAMA 69050 REV C PÁGINA 2 DE 2

EJE RILE

DIAGRAMA DE CABLEADO

BENCHMARK 1500/2000

AERCO International, Inc. • 100 Driftway • Bluebell, NY 10913 OMM-0132_A
Tel: 800-526-0288

GF-206-LA-LA
CONEXIONES DE CAJA DE CONTROL

CONECTOR DE 19 PINES – P5

CONECTOR DE 16 PINES – P3

CONECTOR DE 9 PINES – P4

CONECTOR DE 7 PINES – P1

Benchmark 3000 208 VAC – Diagrama 8040 rev F, Página 1 de 2
CONEXIONES DE CAJA DE CONTROL

CONECTOR DE 24 PINES - P2

CONECTOR DE 16 PINES - P6

CAJA DE ENTRADA/SALIDA

CONECTORES DE 24 PINES - P2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CONEXIONES DE CAJA DE CONTROL

CONECTORES DE 24 PINES - P2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CAJA DE ENTRADA/SALIDA

CABLE DE ALIMENTACIÓN DE VÁLVULA SECUENCIAL [A CAJA DE ALIMENTACIÓN] 63156

PARA REVISIONES VEA LA PRIMERA PÁGINA

TÍTULO

DIAGRAMA DE CABLEADO 208 VAC TRIFÁSICO, BMK 2500

FMI

DIAGRAMA Nº.

68060

HOJA 2 DE 2

68060

C

Realizado en

Fecha

Revisado por:

Especificación de Material:

Tiempos de proyección de ángulo

Tamaño de diseño original

Fecha

CONEXIONES DE CAJA DE CONTROL

Guía de operación, mantenimiento y servicio de Benchmark 750-3000 Operation, Service & Maintenance Guide-Latin America

APÉNDICE I – DIAGRAMAS DE CABLEADOS

Benchmark 2500 208 – Número de diagrama: 68060 rev C Página 2 de 2
CONEXIONES DE CAJA DE CONTROL

CONECTOR DE 24 PINES - P2

CONECTOR DE 16 PINES – P6

CAJA DE ENTRADA/SALIDA

Benchmark 2500/3000 460 VAC DBB – Número de diagrama: 68063 rev B Página 2 de 2
Apéndice J: VISTAS DEL CONTROLADOR C-MORE

Figura J-1 – Controlador C-More - Vista detallada
Figura J-2: Vista trasera de Controlador C-More
NOTA:
Vea las Ilustraciones de la Lista de piezas I en el Apéndice F – H para ubicar las piezas de repuesto recomendadas y opcionales que aparecen en las siguientes tablas.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>BMK 750/1000</th>
<th>BMK 1500/2000</th>
<th>BMK 2500/3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit de remplazo Ventilador 120 VAC</td>
<td>58061</td>
<td>58038</td>
<td>58063-1 – 460V 58063-2 – 208-230V</td>
</tr>
<tr>
<td>Combo Actuador/Regulador de SSOV - Usado en:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TODOS los los trenes de gas FM</td>
<td>64048</td>
<td>64048</td>
<td>64048</td>
</tr>
<tr>
<td>• SSOV posterior en trenes de gas DBB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuador de SSOV Sin Interruptor de Cierre - Usado en:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SSOV anterior en trenes de gas DBB</td>
<td>27086-1</td>
<td>27086-1</td>
<td>27086-1</td>
</tr>
<tr>
<td>Interruptor de temperatura - Reset Manual</td>
<td>123552</td>
<td>123552</td>
<td>123552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>NÚMERO DE PIEZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit de mantenimiento anual</td>
<td>BMK 750 – 3000: 58025-01</td>
</tr>
<tr>
<td>Kit de inspección de circuito de circuito de agua/chimenea de 24 meses</td>
<td>BMK 750/1000: 58025-08 BMK 1500/2000: 58025-13 BMK 2500/3000: 58025-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>NÚMERO DE PIEZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlador C-More</td>
<td>69186-4</td>
</tr>
<tr>
<td>Quemador</td>
<td></td>
</tr>
<tr>
<td>BMK 750/1000</td>
<td>46026</td>
</tr>
<tr>
<td>BMK 1500</td>
<td>46042</td>
</tr>
<tr>
<td>BMK 2000</td>
<td>46044</td>
</tr>
<tr>
<td>BMK 2500</td>
<td>46039</td>
</tr>
<tr>
<td>BMK 3000</td>
<td>46038</td>
</tr>
<tr>
<td>Sensor de oxígeno bajo</td>
<td>61026</td>
</tr>
<tr>
<td>Fecha</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>01/02/2018</td>
<td>Rev A: Publicación inicial</td>
</tr>
</tbody>
</table>

Registro de cambios: